Reorganize files
This commit is contained in:
90
assets/01_common.R
Normal file
90
assets/01_common.R
Normal file
@@ -0,0 +1,90 @@
|
||||
text_size <- 16
|
||||
linesize <- 1
|
||||
width <- 12
|
||||
height <- 6
|
||||
|
||||
# col_lightgray <- "#e7e7e7"
|
||||
# col_blue <- "#F24159"
|
||||
# col_b_smooth <- "#F7CE14"
|
||||
# col_p_smooth <- "#58A64A"
|
||||
# col_pointwise <- "#772395"
|
||||
# col_b_constant <- "#BF236D"
|
||||
# col_p_constant <- "#F6912E"
|
||||
# col_optimum <- "#666666"
|
||||
|
||||
# https://www.schemecolor.com/retro-rainbow-pastels.php
|
||||
col_lightgray <- "#e7e7e7"
|
||||
col_blue <- "#F24159"
|
||||
col_b_smooth <- "#5391AE"
|
||||
col_p_smooth <- "#85B464"
|
||||
col_pointwise <- "#E2D269"
|
||||
col_b_constant <- "#7A4E8A"
|
||||
col_p_constant <- "#BC677B"
|
||||
col_optimum <- "#666666"
|
||||
col_auto <- "#EA915E"
|
||||
|
||||
T_selection <- c(32, 128, 512)
|
||||
|
||||
# Lambda grid
|
||||
lamgrid <- c(-Inf, 2^(-15:25))
|
||||
|
||||
# Gamma grid
|
||||
gammagrid <- sort(1 - sqrt(seq(0, 0.99, .05)))
|
||||
|
||||
material_pals <- c(
|
||||
"red", "pink", "purple", "deep-purple", "indigo",
|
||||
"blue", "light-blue", "cyan", "teal", "green", "light-green", "lime",
|
||||
"yellow", "amber", "orange", "deep-orange", "brown", "grey", "blue-grey"
|
||||
)
|
||||
cols <- purrr::map(material_pals, ~ ggsci::pal_material(.x)(10)) %>%
|
||||
purrr::reduce(cbind)
|
||||
colnames(cols) <- material_pals
|
||||
|
||||
cols %>%
|
||||
as_tibble() %>%
|
||||
mutate(idx = as.factor(1:10)) %>%
|
||||
pivot_longer(-idx, names_to = "var", values_to = "val") %>%
|
||||
mutate(var = factor(var, levels = material_pals[19:1])) %>%
|
||||
ggplot() +
|
||||
xlab(NULL) +
|
||||
ylab(NULL) +
|
||||
geom_tile(aes(x = idx, y = var, fill = val)) +
|
||||
scale_fill_identity() +
|
||||
scale_x_discrete(expand = c(0, 0)) +
|
||||
scale_y_discrete(expand = c(0, 0)) +
|
||||
theme_minimal() -> plot_cols
|
||||
|
||||
col_gas <- "blue"
|
||||
col_eua <- "green"
|
||||
col_oil <- "amber"
|
||||
col_coal <- "brown"
|
||||
|
||||
col_scale2 <- function(x, rng_t) {
|
||||
ret <- x
|
||||
for (i in seq_along(x)) {
|
||||
if (x[i] < rng_t[1]) {
|
||||
ret[i] <- col_scale(rng_t[1])
|
||||
} else if (x[i] > rng_t[2]) {
|
||||
ret[i] <- col_scale(rng_t[2])
|
||||
} else {
|
||||
ret[i] <- col_scale(x[i])
|
||||
}
|
||||
}
|
||||
return(ret)
|
||||
}
|
||||
|
||||
rng_t <- c(-5, 5)
|
||||
h_sub <- c(1, 5, 30)
|
||||
|
||||
col_scale <- scales::gradient_n_pal(
|
||||
c(
|
||||
cols[5, "green"],
|
||||
cols[5, "light-green"],
|
||||
cols[5, "yellow"],
|
||||
# cols[5, "amber"],
|
||||
cols[5, "orange"],
|
||||
# cols[5, "deep-orange"],
|
||||
cols[5, "red"]
|
||||
),
|
||||
values = seq(rng_t[1], rng_t[2], length.out = 5)
|
||||
)
|
||||
BIN
assets/crps_learning/algos_changing.gif
Normal file
BIN
assets/crps_learning/algos_changing.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 2.3 MiB |
BIN
assets/crps_learning/algos_constant.gif
Normal file
BIN
assets/crps_learning/algos_constant.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 3.1 MiB |
BIN
assets/crps_learning/pre_vs_post.gif
Normal file
BIN
assets/crps_learning/pre_vs_post.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 1.6 MiB |
BIN
assets/crps_learning/pre_vs_post_lambda.gif
Normal file
BIN
assets/crps_learning/pre_vs_post_lambda.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 1.2 MiB |
BIN
assets/crps_learning/uneven_grid.gif
Normal file
BIN
assets/crps_learning/uneven_grid.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 4.2 MiB |
BIN
assets/crps_learning/weights_lambda.gif
Normal file
BIN
assets/crps_learning/weights_lambda.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 692 KiB |
558
assets/library.bib
Normal file
558
assets/library.bib
Normal file
@@ -0,0 +1,558 @@
|
||||
@article{aastveit2014nowcasting,
|
||||
title = {Nowcasting GDP in real time: A density combination approach},
|
||||
author = {Aastveit, Knut Are and Gerdrup, Karsten R and Jore, Anne Sofie and Thorsrud, Leif Anders},
|
||||
journal = {Journal of Business \& Economic Statistics},
|
||||
volume = {32},
|
||||
number = {1},
|
||||
pages = {48--68},
|
||||
year = {2014},
|
||||
publisher = {Taylor \& Francis}
|
||||
}
|
||||
@article{berrisch2023modeling,
|
||||
title = {Modeling volatility and dependence of European carbon and energy prices},
|
||||
author = {Berrisch, Jonathan and Pappert, Sven and Ziel, Florian and Arsova, Antonia},
|
||||
journal = {Finance Research Letters},
|
||||
volume = {52},
|
||||
pages = {103503},
|
||||
year = {2023},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@incollection{aastveit2019evolution,
|
||||
title = {The Evolution of Forecast Density Combinations in Economics},
|
||||
author = {Aastveit, Knut Are and Mitchell, James and Ravazzolo, Francesco and van Dijk, Herman K},
|
||||
booktitle = {Oxford Research Encyclopedia of Economics and Finance},
|
||||
year = {2019}
|
||||
}
|
||||
@article{marcjasz2022distributional,
|
||||
title = {Distributional neural networks for electricity price forecasting},
|
||||
author = {Marcjasz, Grzegorz and Narajewski, Micha{\l} and Weron, Rafa{\l} and Ziel, Florian},
|
||||
journal = {Energy Economics},
|
||||
volume = {125},
|
||||
pages = {106843},
|
||||
year = {2023},
|
||||
doi = {10.1016/j.eneco.2023.106843},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{atiya2020does,
|
||||
title = {Why does forecast combination work so well?},
|
||||
author = {Atiya, Amir F},
|
||||
journal = {International Journal of Forecasting},
|
||||
volume = {36},
|
||||
number = {1},
|
||||
pages = {197--200},
|
||||
year = {2020},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{atsalakis2016using,
|
||||
title = {Using computational intelligence to forecast carbon prices},
|
||||
author = {Atsalakis, George S},
|
||||
journal = {Applied Soft Computing},
|
||||
volume = {43},
|
||||
pages = {107--116},
|
||||
year = {2016},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{bai2020does,
|
||||
title = {Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting},
|
||||
author = {Bai, Lan and Li, Xiafei and Wei, Yu and Wei, Guiwu},
|
||||
journal = {International Journal of Finance \& Economics},
|
||||
year = {2020},
|
||||
publisher = {Wiley Online Library}
|
||||
}
|
||||
@article{benz2009modeling,
|
||||
title = {Modeling the price dynamics of CO2 emission allowances},
|
||||
author = {Benz, Eva and Tr{\"u}ck, Stefan},
|
||||
journal = {Energy Economics},
|
||||
volume = {31},
|
||||
number = {1},
|
||||
pages = {4--15},
|
||||
year = {2009},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{biau2011sequential,
|
||||
title = {Sequential quantile prediction of time series},
|
||||
author = {Biau, G{\'e}rard and Patra, Beno{\^\i}t},
|
||||
journal = {IEEE Transactions on Information Theory},
|
||||
volume = {57},
|
||||
number = {3},
|
||||
pages = {1664--1674},
|
||||
year = {2011},
|
||||
publisher = {IEEE}
|
||||
}
|
||||
@inproceedings{bousquet2001tracking,
|
||||
title = {Tracking a small set of experts by mixing past posteriors},
|
||||
author = {Bousquet, Olivier and Warmuth, Manfred K},
|
||||
booktitle = {International Conference on Computational Learning Theory},
|
||||
pages = {31--47},
|
||||
year = {2001},
|
||||
organization = {Springer}
|
||||
}
|
||||
@article{bregere2020online,
|
||||
title = {Online hierarchical forecasting for power consumption data},
|
||||
author = {Br{\'e}g{\`e}re, Margaux and Huard, Malo},
|
||||
journal = {arXiv preprint arXiv:2003.00585},
|
||||
year = {2020}
|
||||
}
|
||||
@article{busetti2017quantile,
|
||||
title = {Quantile aggregation of density forecasts},
|
||||
author = {Busetti, Fabio},
|
||||
journal = {Oxford Bulletin of Economics and Statistics},
|
||||
volume = {79},
|
||||
number = {4},
|
||||
pages = {495--512},
|
||||
year = {2017},
|
||||
publisher = {Wiley Online Library}
|
||||
}
|
||||
@book{cesa2006prediction,
|
||||
title = {Prediction, learning, and games},
|
||||
author = {Cesa-Bianchi, Nicolo and Lugosi, G{\'a}bor},
|
||||
year = {2006},
|
||||
publisher = {Cambridge university press}
|
||||
}
|
||||
@article{cesa2012mirror,
|
||||
title = {Mirror descent meets fixed share (and feels no regret)},
|
||||
author = {Cesa-Bianchi, Nicolo and Gaillard, Pierre and Lugosi, G{\'a}bor and Stoltz, Gilles},
|
||||
journal = {Advances in Neural Information Processing Systems},
|
||||
volume = {25},
|
||||
pages = {980--988},
|
||||
year = {2012}
|
||||
}
|
||||
@article{cheng2015forecasting,
|
||||
title = {Forecasting with factor-augmented regression: A frequentist model averaging approach},
|
||||
author = {Cheng, Xu and Hansen, Bruce E},
|
||||
journal = {Journal of Econometrics},
|
||||
volume = {186},
|
||||
number = {2},
|
||||
pages = {280--293},
|
||||
year = {2015},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{chernozhukov2010quantile,
|
||||
title = {Quantile and probability curves without crossing},
|
||||
author = {Chernozhukov, Victor and Fern{\'a}ndez-Val, Iv{\'a}n and Galichon, Alfred},
|
||||
journal = {Econometrica},
|
||||
volume = {78},
|
||||
number = {3},
|
||||
pages = {1093--1125},
|
||||
year = {2010},
|
||||
publisher = {Wiley Online Library}
|
||||
}
|
||||
@article{devaine2013forecasting,
|
||||
title = {Forecasting electricity consumption by aggregating specialized experts},
|
||||
author = {Devaine, Marie and Gaillard, Pierre and Goude, Yannig and Stoltz, Gilles},
|
||||
journal = {Machine Learning},
|
||||
volume = {90},
|
||||
number = {2},
|
||||
pages = {231--260},
|
||||
year = {2013},
|
||||
publisher = {Springer}
|
||||
}
|
||||
@article{dutta2018modeling,
|
||||
title = {Modeling and forecasting the volatility of carbon emission market: The role of outliers, time-varying jumps and oil price risk},
|
||||
author = {Dutta, Anupam},
|
||||
journal = {Journal of Cleaner Production},
|
||||
volume = {172},
|
||||
pages = {2773--2781},
|
||||
year = {2018},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{eddelbuettel2014rcpparmadillo,
|
||||
title = {RcppArmadillo: Accelerating R with high-performance C++ linear algebra},
|
||||
author = {Eddelbuettel, Dirk and Sanderson, Conrad},
|
||||
journal = {Computational Statistics \& Data Analysis},
|
||||
volume = {71},
|
||||
pages = {1054--1063},
|
||||
year = {2014},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{fragoso2018bayesian,
|
||||
title = {Bayesian model averaging: A systematic review and conceptual classification},
|
||||
author = {Fragoso, Tiago M and Bertoli, Wesley and Louzada, Francisco},
|
||||
journal = {International Statistical Review},
|
||||
volume = {86},
|
||||
number = {1},
|
||||
pages = {1--28},
|
||||
year = {2018},
|
||||
publisher = {Wiley Online Library}
|
||||
}
|
||||
@inproceedings{gaillard2014second,
|
||||
title = {A second-order bound with excess losses},
|
||||
author = {Gaillard, Pierre and Stoltz, Gilles and Van Erven, Tim},
|
||||
booktitle = {Conference on Learning Theory},
|
||||
pages = {176--196},
|
||||
year = {2014},
|
||||
organization = {PMLR}
|
||||
}
|
||||
@incollection{gaillard2015forecasting,
|
||||
title = {Forecasting electricity consumption by aggregating experts; how to design a good set of experts},
|
||||
author = {Gaillard, Pierre and Goude, Yannig},
|
||||
booktitle = {Modeling and stochastic learning for forecasting in high dimensions},
|
||||
pages = {95--115},
|
||||
year = {2015},
|
||||
publisher = {Springer}
|
||||
}
|
||||
@inproceedings{gaillard2018efficient,
|
||||
title = {Efficient online algorithms for fast-rate regret bounds under sparsity},
|
||||
author = {Gaillard, Pierre and Wintenberger, Olivier},
|
||||
booktitle = {Advances in Neural Information Processing Systems},
|
||||
pages = {7026--7036},
|
||||
year = {2018}
|
||||
}
|
||||
@article{garcia2020short,
|
||||
title = {Short-term European Union Allowance price forecasting with artificial neural networks},
|
||||
author = {Garc{\'\i}a, Agust{\'\i}n and Jaramillo-Mor{\'a}n, Miguel A},
|
||||
journal = {Entrepreneurship and Sustainability Issues},
|
||||
volume = {8},
|
||||
number = {1},
|
||||
pages = {261},
|
||||
year = {2020}
|
||||
}
|
||||
@article{gneiting2007strictly,
|
||||
title = {Strictly proper scoring rules, prediction, and estimation},
|
||||
author = {Gneiting, Tilmann and Raftery, Adrian E},
|
||||
journal = {Journal of the American statistical Association},
|
||||
volume = {102},
|
||||
number = {477},
|
||||
pages = {359--378},
|
||||
year = {2007},
|
||||
publisher = {Taylor \& Francis}
|
||||
}
|
||||
@article{gneiting2011comparing,
|
||||
title = {Comparing density forecasts using threshold-and quantile-weighted scoring rules},
|
||||
author = {Gneiting, Tilmann and Ranjan, Roopesh},
|
||||
journal = {Journal of Business \& Economic Statistics},
|
||||
volume = {29},
|
||||
number = {3},
|
||||
pages = {411--422},
|
||||
year = {2011},
|
||||
publisher = {Taylor \& Francis}
|
||||
}
|
||||
@article{gneiting2011making,
|
||||
title = {Making and evaluating point forecasts},
|
||||
author = {Gneiting, Tilmann},
|
||||
journal = {Journal of the American Statistical Association},
|
||||
volume = {106},
|
||||
number = {494},
|
||||
pages = {746--762},
|
||||
year = {2011},
|
||||
publisher = {Taylor \& Francis}
|
||||
}
|
||||
@article{gneiting2011quantiles,
|
||||
title = {Quantiles as optimal point forecasts},
|
||||
author = {Gneiting, Tilmann},
|
||||
journal = {International Journal of forecasting},
|
||||
volume = {27},
|
||||
number = {2},
|
||||
pages = {197--207},
|
||||
year = {2011},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{hansen2008least,
|
||||
title = {Least-squares forecast averaging},
|
||||
author = {Hansen, Bruce E},
|
||||
journal = {Journal of Econometrics},
|
||||
volume = {146},
|
||||
number = {2},
|
||||
pages = {342--350},
|
||||
year = {2008},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{hao2020modelling,
|
||||
title = {Modelling of carbon price in two real carbon trading markets},
|
||||
author = {Hao, Yan and Tian, Chengshi and Wu, Chunying},
|
||||
journal = {Journal of Cleaner Production},
|
||||
volume = {244},
|
||||
pages = {118556},
|
||||
year = {2020},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{he1997quantile,
|
||||
title = {Quantile curves without crossing},
|
||||
author = {He, Xuming},
|
||||
journal = {The American Statistician},
|
||||
volume = {51},
|
||||
number = {2},
|
||||
pages = {186--192},
|
||||
year = {1997},
|
||||
publisher = {Taylor \& Francis}
|
||||
}
|
||||
@article{herbster1998tracking,
|
||||
title = {Tracking the best expert},
|
||||
author = {Herbster, Mark and Warmuth, Manfred K},
|
||||
journal = {Machine learning},
|
||||
volume = {32},
|
||||
number = {2},
|
||||
pages = {151--178},
|
||||
year = {1998},
|
||||
publisher = {Springer}
|
||||
}
|
||||
@article{hsiao2014there,
|
||||
title = {Is there an optimal forecast combination?},
|
||||
author = {Hsiao, Cheng and Wan, Shui Ki},
|
||||
journal = {Journal of Econometrics},
|
||||
volume = {178},
|
||||
pages = {294--309},
|
||||
year = {2014},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@book{hyndman2018forecasting,
|
||||
title = {Forecasting: principles and practice},
|
||||
author = {Hyndman, Rob J and Athanasopoulos, George},
|
||||
year = {2018},
|
||||
publisher = {OTexts}
|
||||
}
|
||||
@article{jore2010combining,
|
||||
title = {Combining forecast densities from VARs with uncertain instabilities},
|
||||
author = {Jore, Anne Sofie and Mitchell, James and Vahey, Shaun P},
|
||||
journal = {Journal of Applied Econometrics},
|
||||
volume = {25},
|
||||
number = {4},
|
||||
pages = {621--634},
|
||||
year = {2010},
|
||||
publisher = {Wiley Online Library}
|
||||
}
|
||||
@inproceedings{kakade2008generalization,
|
||||
title = {On the Generalization Ability of Online Strongly Convex Programming Algorithms.},
|
||||
author = {Kakade, Sham M and Tewari, Ambuj},
|
||||
booktitle = {NIPS},
|
||||
pages = {801--808},
|
||||
year = {2008}
|
||||
}
|
||||
@article{kapetanios2015generalised,
|
||||
title = {Generalised density forecast combinations},
|
||||
author = {Kapetanios, G and Mitchell, James and Price, Simon and Fawcett, Nicholas},
|
||||
journal = {Journal of Econometrics},
|
||||
volume = {188},
|
||||
number = {1},
|
||||
pages = {150--165},
|
||||
year = {2015},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@inproceedings{koolen2015second,
|
||||
title = {Second-order quantile methods for experts and combinatorial games},
|
||||
author = {Koolen, Wouter M and Van Erven, Tim},
|
||||
booktitle = {Conference on Learning Theory},
|
||||
pages = {1155--1175},
|
||||
year = {2015}
|
||||
}
|
||||
@article{koop2013forecasting,
|
||||
title = {Forecasting the European carbon market},
|
||||
author = {Koop, Gary and Tole, Lise},
|
||||
journal = {Journal of the Royal Statistical Society: Series A (Statistics in Society)},
|
||||
volume = {176},
|
||||
number = {3},
|
||||
pages = {723--741},
|
||||
year = {2013},
|
||||
publisher = {Wiley Online Library}
|
||||
}
|
||||
@article{korotin2019integral,
|
||||
title = {Integral Mixabilty: a Tool for Efficient Online Aggregation of Functional and Probabilistic Forecasts},
|
||||
author = {Korotin, Alexander and V'yugin, Vladimir and Burnaev, Evgeny},
|
||||
journal = {arXiv preprint arXiv:1912.07048},
|
||||
year = {2019}
|
||||
}
|
||||
@inproceedings{korotin2020mixing,
|
||||
title = {Mixing past predictions},
|
||||
author = {Korotin, Alexander and V’yugin, Vladimir and Burnaev, Evgeny},
|
||||
booktitle = {Conformal and Probabilistic Prediction and Applications},
|
||||
pages = {171--188},
|
||||
year = {2020},
|
||||
organization = {PMLR}
|
||||
}
|
||||
@article{lichtendahl2013better,
|
||||
title = {Is it better to average probabilities or quantiles?},
|
||||
author = {Lichtendahl Jr, Kenneth C and Grushka-Cockayne, Yael and Winkler, Robert L},
|
||||
journal = {Management Science},
|
||||
volume = {59},
|
||||
number = {7},
|
||||
pages = {1594--1611},
|
||||
year = {2013},
|
||||
publisher = {INFORMS}
|
||||
}
|
||||
@article{lin2018multi,
|
||||
title = {A multi-model combination approach for probabilistic wind power forecasting},
|
||||
author = {Lin, You and Yang, Ming and Wan, Can and Wang, Jianhui and Song, Yonghua},
|
||||
journal = {IEEE Transactions on Sustainable Energy},
|
||||
volume = {10},
|
||||
number = {1},
|
||||
pages = {226--237},
|
||||
year = {2018},
|
||||
publisher = {IEEE}
|
||||
}
|
||||
@article{littlestone1994weighted,
|
||||
title = {The weighted majority algorithm},
|
||||
author = {Littlestone, Nick and Warmuth, Manfred K},
|
||||
journal = {Information and computation},
|
||||
volume = {108},
|
||||
number = {2},
|
||||
pages = {212--261},
|
||||
year = {1994},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{lu2015jackknife,
|
||||
title = {Jackknife model averaging for quantile regressions},
|
||||
author = {Lu, Xun and Su, Liangjun},
|
||||
journal = {Journal of Econometrics},
|
||||
volume = {188},
|
||||
number = {1},
|
||||
pages = {40--58},
|
||||
year = {2015},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{maciejowska2020pca,
|
||||
title = {PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices},
|
||||
author = {Maciejowska, Katarzyna and Uniejewski, Bartosz and Serafin, Tomasz},
|
||||
journal = {Energies},
|
||||
volume = {13},
|
||||
number = {14},
|
||||
pages = {3530},
|
||||
year = {2020},
|
||||
publisher = {Multidisciplinary Digital Publishing Institute}
|
||||
}
|
||||
@article{mhammedi2019lipschitz,
|
||||
title = {Lipschitz adaptivity with multiple learning rates in online learning},
|
||||
author = {Mhammedi, Zakaria and Koolen, Wouter M and Van Erven, Tim},
|
||||
journal = {arXiv preprint arXiv:1902.10797},
|
||||
year = {2019}
|
||||
}
|
||||
@article{nowotarski2018recent,
|
||||
title = {Recent advances in electricity price forecasting: A review of probabilistic forecasting},
|
||||
author = {Nowotarski, Jakub and Weron, Rafa{\l}},
|
||||
journal = {Renewable and Sustainable Energy Reviews},
|
||||
volume = {81},
|
||||
pages = {1548--1568},
|
||||
year = {2018},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{opschoor2017combining,
|
||||
title = {Combining density forecasts using focused scoring rules},
|
||||
author = {Opschoor, Anne and Van Dijk, Dick and van der Wel, Michel},
|
||||
journal = {Journal of Applied Econometrics},
|
||||
volume = {32},
|
||||
number = {7},
|
||||
pages = {1298--1313},
|
||||
year = {2017},
|
||||
publisher = {Wiley Online Library}
|
||||
}
|
||||
@article{petropoulos2020forecasting,
|
||||
title = {Forecasting: theory and practice},
|
||||
author = {Petropoulos, Fotios and Apiletti, Daniele and Assimakopoulos, Vassilios and Babai, Mohamed Zied and Barrow, Devon K and Bergmeir, Christoph and Bessa, Ricardo J and Boylan, John E and Browell, Jethro and Carnevale, Claudio and others},
|
||||
journal = {arXiv preprint arXiv:2012.03854},
|
||||
year = {2020}
|
||||
}
|
||||
@article{raftery2005using,
|
||||
title = {Using Bayesian model averaging to calibrate forecast ensembles},
|
||||
author = {Raftery, Adrian E and Gneiting, Tilmann and Balabdaoui, Fadoua and Polakowski, Michael},
|
||||
journal = {Monthly weather review},
|
||||
volume = {133},
|
||||
number = {5},
|
||||
pages = {1155--1174},
|
||||
year = {2005}
|
||||
}
|
||||
@article{segnon2017modeling,
|
||||
title = {Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models},
|
||||
author = {Segnon, Mawuli and Lux, Thomas and Gupta, Rangan},
|
||||
journal = {Renewable and Sustainable Energy Reviews},
|
||||
volume = {69},
|
||||
pages = {692--704},
|
||||
year = {2017},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{thorey2017online,
|
||||
title = {Online learning with the Continuous Ranked Probability Score for ensemble forecasting},
|
||||
author = {Thorey, Jean and Mallet, Vivien and Baudin, Paul},
|
||||
journal = {Quarterly Journal of the Royal Meteorological Society},
|
||||
volume = {143},
|
||||
number = {702},
|
||||
pages = {521--529},
|
||||
year = {2017},
|
||||
publisher = {Wiley Online Library}
|
||||
}
|
||||
@article{thorey2018ensemble,
|
||||
title = {Ensemble forecast of photovoltaic power with online CRPS learning},
|
||||
author = {Thorey, Jean and Chaussin, Christophe and Mallet, Vivien},
|
||||
journal = {International Journal of Forecasting},
|
||||
volume = {34},
|
||||
number = {4},
|
||||
pages = {762--773},
|
||||
year = {2018},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{tu2011markowitz,
|
||||
title = {Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies},
|
||||
author = {Tu, Jun and Zhou, Guofu},
|
||||
journal = {Journal of Financial Economics},
|
||||
volume = {99},
|
||||
number = {1},
|
||||
pages = {204--215},
|
||||
year = {2011},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{v2020online,
|
||||
title = {Online Aggregation of Probabilistic Forecasts Based on the Continuous Ranked Probability Score},
|
||||
author = {V’yugin, VV and Trunov, VG},
|
||||
journal = {Journal of Communications Technology and Electronics},
|
||||
volume = {65},
|
||||
number = {6},
|
||||
pages = {662--676},
|
||||
year = {2020},
|
||||
publisher = {Springer}
|
||||
}
|
||||
@article{van2018probabilistic,
|
||||
title = {Probabilistic forecasting of solar power, electricity consumption and net load: Investigating the effect of seasons, aggregation and penetration on prediction intervals},
|
||||
author = {Van der Meer, DW and Munkhammar, Joakim and Wid{\'e}n, Joakim},
|
||||
journal = {Solar Energy},
|
||||
volume = {171},
|
||||
pages = {397--413},
|
||||
year = {2018},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{vovk1990aggregating,
|
||||
title = {Aggregating strategies},
|
||||
author = {Vovk, Volodimir G},
|
||||
journal = {Proc. of Computational Learning Theory, 1990},
|
||||
year = {1990}
|
||||
}
|
||||
@book{wahba1990spline,
|
||||
title = {Spline models for observational data},
|
||||
author = {Wahba, Grace},
|
||||
year = {1990},
|
||||
publisher = {SIAM}
|
||||
}
|
||||
@book{wang2011smoothing,
|
||||
title = {Smoothing splines: methods and applications},
|
||||
author = {Wang, Yuedong},
|
||||
year = {2011},
|
||||
publisher = {CRC Press}
|
||||
}
|
||||
@article{wang2019jackknife,
|
||||
title = {Jackknife Model Averaging for Composite Quantile Regression},
|
||||
author = {Wang, Miaomiao and Zou, Guohua},
|
||||
journal = {arXiv preprint arXiv:1910.12209},
|
||||
year = {2019}
|
||||
}
|
||||
@article{wintenberger2017optimal,
|
||||
title = {Optimal learning with Bernstein online aggregation},
|
||||
author = {Wintenberger, Olivier},
|
||||
journal = {Machine Learning},
|
||||
volume = {106},
|
||||
number = {1},
|
||||
pages = {119--141},
|
||||
year = {2017},
|
||||
publisher = {Springer}
|
||||
}
|
||||
@article{zamo2020sequential,
|
||||
title = {Sequential Aggregation of Probabilistic Forecasts--Applicaton to Wind Speed Ensemble Forecasts},
|
||||
author = {Zamo, Micha{\"e}l and Bel, Liliane and Mestre, Olivier},
|
||||
journal = {arXiv preprint arXiv:2005.03540},
|
||||
year = {2020}
|
||||
}
|
||||
@article{zhang2020load,
|
||||
title = {Load probability density forecasting by transforming and combining quantile forecasts},
|
||||
author = {Zhang, Shu and Wang, Yi and Zhang, Yutian and Wang, Dan and Zhang, Ning},
|
||||
journal = {Applied Energy},
|
||||
volume = {277},
|
||||
pages = {115600},
|
||||
year = {2020},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
BIN
assets/logos_combined.xcf
Normal file
BIN
assets/logos_combined.xcf
Normal file
Binary file not shown.
82
assets/make_knots_data.R
Normal file
82
assets/make_knots_data.R
Normal file
@@ -0,0 +1,82 @@
|
||||
# %%
|
||||
library(profoc)
|
||||
library(ggplot2)
|
||||
library(tidyr)
|
||||
library(dplyr)
|
||||
library(readr)
|
||||
|
||||
# Creating faceted plots for different knot values and mu values
|
||||
# Create a function to generate the data for a given number of knots and mu value
|
||||
generate_basis_data <- function(num_knots, mu_value, sig_value, nonc_value, tailw_value, deg_value) {
|
||||
grid <- seq(from = 0, to = 1, length.out = 26)
|
||||
# Use provided degree
|
||||
B <- profoc:::make_basis_matrix(grid,
|
||||
profoc::make_knots(
|
||||
n = num_knots,
|
||||
mu = mu_value,
|
||||
sig = sig_value,
|
||||
nonc = nonc_value,
|
||||
tailw = tailw_value,
|
||||
deg = deg_value
|
||||
),
|
||||
deg = deg_value
|
||||
)
|
||||
B_mat <- round(as.matrix(B), 5)
|
||||
df <- as.data.frame(B_mat)
|
||||
df$x <- grid
|
||||
df_long <- pivot_longer(df,
|
||||
cols = -x,
|
||||
names_to = "b",
|
||||
values_to = "y"
|
||||
)
|
||||
df_long$knots <- num_knots
|
||||
df_long$mu <- mu_value
|
||||
df_long$sig <- sig_value
|
||||
df_long$nonc <- nonc_value
|
||||
df_long$tailw <- tailw_value
|
||||
df_long$deg <- deg_value
|
||||
return(df_long)
|
||||
}
|
||||
|
||||
# Generate data for each combination of knot, mu, sig, nonc, tailw, and deg
|
||||
mu_values <- seq(0.1, 0.9, by = 0.2)
|
||||
sig_values <- 2^(-2:2)
|
||||
nonc_values <- c(-4, -2, 0, 2, 4)
|
||||
tailw_values <- 2^(-2:2)
|
||||
|
||||
# Create an empty list to store all combinations
|
||||
all_data <- list()
|
||||
counter <- 1
|
||||
|
||||
# Nested loops to cover all parameter combinations
|
||||
for (m in mu_values) {
|
||||
print(paste("Processing mu:", m))
|
||||
for (s in sig_values) {
|
||||
for (nc in nonc_values) {
|
||||
for (tw in tailw_values) {
|
||||
all_data[[counter]] <- generate_basis_data(5, m, s, nc, tw, 2)
|
||||
counter <- counter + 1
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Combine all data frames
|
||||
all_data <- bind_rows(all_data)
|
||||
|
||||
write_csv(all_data, "25_07_phd_defense/assets/mcrps_learning/basis_functions.csv")
|
||||
|
||||
# %%
|
||||
all_data %>%
|
||||
filter(mu == 0.1) %>%
|
||||
filter(sig == 0.25) %>%
|
||||
filter(nonc == -4) %>%
|
||||
filter(tailw == 0.25) %>%
|
||||
ggplot(aes(x = x, y = y, col = b)) +
|
||||
geom_line(size = 2) +
|
||||
labs(
|
||||
title = "Basis Functions for Different Knot Values",
|
||||
x = "x",
|
||||
y = "y"
|
||||
) +
|
||||
theme_minimal()
|
||||
BIN
assets/voldep/crps_classic.Rdata
Normal file
BIN
assets/voldep/crps_classic.Rdata
Normal file
Binary file not shown.
BIN
assets/voldep/crps_df.Rdata
Normal file
BIN
assets/voldep/crps_df.Rdata
Normal file
Binary file not shown.
BIN
assets/voldep/energy_classic.Rdata
Normal file
BIN
assets/voldep/energy_classic.Rdata
Normal file
Binary file not shown.
BIN
assets/voldep/energy_df.Rdata
Normal file
BIN
assets/voldep/energy_df.Rdata
Normal file
Binary file not shown.
BIN
assets/voldep/plot_quant_df.Rdata
Normal file
BIN
assets/voldep/plot_quant_df.Rdata
Normal file
Binary file not shown.
BIN
assets/voldep/plot_rho_df.Rdata
Normal file
BIN
assets/voldep/plot_rho_df.Rdata
Normal file
Binary file not shown.
BIN
assets/voldep/rmsq_df.Rdata
Normal file
BIN
assets/voldep/rmsq_df.Rdata
Normal file
Binary file not shown.
Reference in New Issue
Block a user