Update slides
This commit is contained in:
33
index.qmd
33
index.qmd
@@ -1041,39 +1041,24 @@ chart = {
|
||||
|
||||
###
|
||||
|
||||
:::: {.columns}
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
Each day, $t = 1, 2, ... T$
|
||||
|
||||
- The **forecaster** receives predictions $\widehat{X}_{t,k}$ from $K$ **experts**
|
||||
- The **forecaster** assigns weights $w_{t,k}$ to each **expert**
|
||||
- The **forecaster** calculates her prediction:
|
||||
- The **forecaster** calculates the prediction:
|
||||
|
||||
\begin{equation}
|
||||
\widetilde{X}_{t} = \sum_{k=1}^K w_{t,k} \widehat{X}_{t,k}.
|
||||
\label{eq_forecast_def}
|
||||
\end{equation}
|
||||
|
||||
- The realization for $t$ is observed
|
||||
|
||||
:::
|
||||
<i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_9);"></i> The experts can be institutions, persons, or models
|
||||
|
||||
::: {.column width="4%"}
|
||||
<i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_9);"></i> The forecasts can be point-forecasts (i.e., mean or median) or full predictive distributions
|
||||
|
||||
:::
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
- The experts can be institutions, persons, or models
|
||||
- The forecasts can be point-forecasts (i.e., mean or median) or full predictive distributions
|
||||
- We do not need a distributional assumption concerning the underlying data
|
||||
- @cesa2006prediction
|
||||
|
||||
:::
|
||||
|
||||
::::
|
||||
|
||||
---
|
||||
<i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_9);"></i> @cesa2006prediction
|
||||
|
||||
## The Regret
|
||||
|
||||
@@ -3005,8 +2990,7 @@ Berrisch, J., Pappert, S., Ziel, F., & Arsova, A. (2023). *Finance Research Lett
|
||||
|
||||
### Motivation
|
||||
|
||||
Understanding European Allowances (EUA) dynamics is important
|
||||
for several fields:
|
||||
Understanding European Emission Allowances (EUA)
|
||||
|
||||
<i class="fa fa-fw fa-chart-pie" style="color:var(--col_grey_9);"></i> Portfolio & Risk Management,
|
||||
|
||||
@@ -3179,7 +3163,8 @@ $$\mathbf{F} = (F_1, \ldots, F_K)^{\intercal}$$
|
||||
|
||||
Generalized non-central t-distributions
|
||||
|
||||
- Time varying: expectation $\boldsymbol{\mu}_t = (\mu_{1,t}, \ldots, \mu_{K,t})^{\intercal}$
|
||||
- Time varying:
|
||||
- expectation $\boldsymbol{\mu}_t = (\mu_{1,t}, \ldots, \mu_{K,t})^{\intercal}$
|
||||
- variance: $\boldsymbol{\sigma}_{t}^2 = (\sigma_{1,t}^2, \ldots, \sigma_{K,t}^2)^{\intercal}$
|
||||
- Time invariant
|
||||
- degrees of freedom: $\boldsymbol{\nu} = (\nu_1, \ldots, \nu_K)^{\intercal}$
|
||||
|
||||
Reference in New Issue
Block a user