Update slides

This commit is contained in:
2025-06-22 16:45:20 +02:00
parent b231513d0a
commit 6b1b6aea20
2 changed files with 208 additions and 228 deletions

View File

@@ -1041,39 +1041,24 @@ chart = {
###  
:::: {.columns}
::: {.column width="48%"}
Each day, $t = 1, 2, ... T$
- The **forecaster** receives predictions $\widehat{X}_{t,k}$ from $K$ **experts**
- The **forecaster** assigns weights $w_{t,k}$ to each **expert**
- The **forecaster** calculates her prediction:
- The **forecaster** calculates the prediction:
\begin{equation}
\widetilde{X}_{t} = \sum_{k=1}^K w_{t,k} \widehat{X}_{t,k}.
\label{eq_forecast_def}
\end{equation}
- The realization for $t$ is observed
:::
<i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_9);"></i> The experts can be institutions, persons, or models
::: {.column width="4%"}
<i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_9);"></i> The forecasts can be point-forecasts (i.e., mean or median) or full predictive distributions
:::
::: {.column width="48%"}
- The experts can be institutions, persons, or models
- The forecasts can be point-forecasts (i.e., mean or median) or full predictive distributions
- We do not need a distributional assumption concerning the underlying data
- @cesa2006prediction
:::
::::
---
<i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_9);"></i> @cesa2006prediction
## The Regret
@@ -3005,8 +2990,7 @@ Berrisch, J., Pappert, S., Ziel, F., & Arsova, A. (2023). *Finance Research Lett
### Motivation
Understanding European Allowances (EUA) dynamics is important
for several fields:
Understanding European Emission Allowances (EUA)
<i class="fa fa-fw fa-chart-pie" style="color:var(--col_grey_9);"></i> Portfolio & Risk Management,
@@ -3179,7 +3163,8 @@ $$\mathbf{F} = (F_1, \ldots, F_K)^{\intercal}$$
Generalized non-central t-distributions
- Time varying: expectation $\boldsymbol{\mu}_t = (\mu_{1,t}, \ldots, \mu_{K,t})^{\intercal}$
- Time varying:
- expectation $\boldsymbol{\mu}_t = (\mu_{1,t}, \ldots, \mu_{K,t})^{\intercal}$
- variance: $\boldsymbol{\sigma}_{t}^2 = (\sigma_{1,t}^2, \ldots, \sigma_{K,t}^2)^{\intercal}$
- Time invariant
- degrees of freedom: $\boldsymbol{\nu} = (\nu_1, \ldots, \nu_K)^{\intercal}$