Update crps optimality
This commit is contained in:
@@ -26350,7 +26350,7 @@ w_{t,k}^{\text{Naive}} = \frac{1}{K}\label{eq:naive_combination}
|
|||||||
\end{align}\]</span></p>
|
\end{align}\]</span></p>
|
||||||
<p>Pointwise can outperform constant procedures</p>
|
<p>Pointwise can outperform constant procedures</p>
|
||||||
<p><i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_10);"></i> <span class="math inline">\(\text{QL}\)</span> is convex: almost optimal convergence w.r.t. <em>convex aggregation</em> <span class="math inline">\(\eqref{eq_boa_opt_conv}\)</span> <i class="fa fa-fw fa-check" style="color:var(--col_green_9);"></i> <br></p>
|
<p><i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_10);"></i> <span class="math inline">\(\text{QL}\)</span> is convex: almost optimal convergence w.r.t. <em>convex aggregation</em> <span class="math inline">\(\eqref{eq_boa_opt_conv}\)</span> <i class="fa fa-fw fa-check" style="color:var(--col_green_9);"></i> <br></p>
|
||||||
<p>For almost optimal convergence w.r.t. <em>selection</em> <span class="math inline">\(\eqref{eq_boa_opt_select}\)</span> we need:</p>
|
<p>For almost optimal convergence w.r.t. <em>selection</em> <span class="math inline">\(\eqref{eq_boa_opt_select}\)</span> we need <span class="citation" data-cites="gaillard2018efficient">(<a href="#/references" role="doc-biblioref" onclick>Gaillard & Wintenberger, 2018</a>)</span>:</p>
|
||||||
<p><strong>A1: Lipschitz Continuity</strong></p>
|
<p><strong>A1: Lipschitz Continuity</strong></p>
|
||||||
<p><strong>A2: Weak Exp-Concavity</strong></p>
|
<p><strong>A2: Weak Exp-Concavity</strong></p>
|
||||||
<p>QL is Lipschitz continuous with <span class="math inline">\(G=\max(p, 1-p)\)</span>:</p>
|
<p>QL is Lipschitz continuous with <span class="math inline">\(G=\max(p, 1-p)\)</span>:</p>
|
||||||
@@ -26370,7 +26370,7 @@ w_{t,k}^{\text{Naive}} = \frac{1}{K}\label{eq:naive_combination}
|
|||||||
& +
|
& +
|
||||||
\mathbb{E}\left[ \left. \left( \alpha(\ell'(x_1, Y_t)(x_1 - x_2))^{2}\right)^{1/\beta} \right|\mathcal{F}_{t-1}\right]
|
\mathbb{E}\left[ \left. \left( \alpha(\ell'(x_1, Y_t)(x_1 - x_2))^{2}\right)^{1/\beta} \right|\mathcal{F}_{t-1}\right]
|
||||||
\end{align*}\]</span></p>
|
\end{align*}\]</span></p>
|
||||||
<p>If <span class="math inline">\(\beta=1\)</span> we get strong-convexity, which implies weak exp-concavity</p>
|
<p>The strongest case is <span class="math inline">\(\beta=1\)</span> (Strong Convexity)</p>
|
||||||
</div></div>
|
</div></div>
|
||||||
</div>
|
</div>
|
||||||
<div id="tabset-2-3">
|
<div id="tabset-2-3">
|
||||||
@@ -26379,8 +26379,8 @@ w_{t,k}^{\text{Naive}} = \frac{1}{K}\label{eq:naive_combination}
|
|||||||
<p>Conditional quantile risk: <span class="math inline">\(\mathcal{Q}_p(x) = \mathbb{E}[ \text{QL}_p(x, Y_t) | \mathcal{F}_{t-1}]\)</span>.</p>
|
<p>Conditional quantile risk: <span class="math inline">\(\mathcal{Q}_p(x) = \mathbb{E}[ \text{QL}_p(x, Y_t) | \mathcal{F}_{t-1}]\)</span>.</p>
|
||||||
<p><i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_10);"></i> convexity properties of <span class="math inline">\(\mathcal{Q}_p\)</span> depend on the conditional distribution <span class="math inline">\(Y_t|\mathcal{F}_{t-1}\)</span>.</p>
|
<p><i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_10);"></i> convexity properties of <span class="math inline">\(\mathcal{Q}_p\)</span> depend on the conditional distribution <span class="math inline">\(Y_t|\mathcal{F}_{t-1}\)</span>.</p>
|
||||||
<p><strong>Proposition 2</strong></p>
|
<p><strong>Proposition 2</strong></p>
|
||||||
<p>Let <span class="math inline">\(Y\)</span> be a univariate random variable with (Radon-Nikodym) <span class="math inline">\(\nu\)</span>-density <span class="math inline">\(f\)</span>, then for the second subderivative of the quantile risk <span class="math inline">\(\mathcal{Q}_p(x) = \mathbb{E}[ \text{QL}_p(x, Y) ]\)</span> of <span class="math inline">\(Y\)</span> it holds for all <span class="math inline">\(p\in(0,1)\)</span> that <span class="math inline">\(\mathcal{Q}_p'' = f.\)</span> Additionally, if <span class="math inline">\(f\)</span> is a continuous Lebesgue-density with <span class="math inline">\(f\geq\gamma>0\)</span> for some constant <span class="math inline">\(\gamma>0\)</span> on its support <span class="math inline">\(\text{spt}(f)\)</span> then <span class="math inline">\(\mathcal{Q}_p\)</span> is <span class="math inline">\(\gamma\)</span>-strongly convex, which implies satisfaction of condition</p>
|
<p>Let <span class="math inline">\(Y\)</span> be a univariate random variable with (Radon-Nikodym) <span class="math inline">\(\nu\)</span>-density <span class="math inline">\(f\)</span>, then for the second subderivative of the quantile risk <span class="math inline">\(\mathcal{Q}_p(x) = \mathbb{E}[ \text{QL}_p(x, Y) ]\)</span> of <span class="math inline">\(Y\)</span> it holds for all <span class="math inline">\(p\in(0,1)\)</span> that <span class="math inline">\(\mathcal{Q}_p'' = f.\)</span> Additionally, if <span class="math inline">\(f\)</span> is a continuous Lebesgue-density with <span class="math inline">\(f\geq\gamma>0\)</span> for some constant <span class="math inline">\(\gamma>0\)</span> on its support <span class="math inline">\(\text{spt}(f)\)</span> then <span class="math inline">\(\mathcal{Q}_p\)</span> is <span class="math inline">\(\gamma\)</span>-strongly convex.</p>
|
||||||
<p><strong>A2</strong> with <span class="math inline">\(\beta=1\)</span> <i class="fa fa-fw fa-check" style="color:var(--col_green_9);"></i> <span class="citation" data-cites="gaillard2018efficient">Gaillard & Wintenberger (<a href="#/references" role="doc-biblioref" onclick>2018</a>)</span></p>
|
<p>This implies satisfaction of condition <strong>A2</strong> with <span class="math inline">\(\beta=1\)</span> and <span class="math inline">\(\alpha = \gamma / 2G^2\)</span> <i class="fa fa-fw fa-check" style="color:var(--col_green_9);"></i> <span class="citation" data-cites="gaillard2018efficient">(<a href="#/references" role="doc-biblioref" onclick>Gaillard & Wintenberger, 2018</a>)</span></p>
|
||||||
</div><div class="column" style="width:4%;">
|
</div><div class="column" style="width:4%;">
|
||||||
|
|
||||||
</div><div class="column" style="width:48%;">
|
</div><div class="column" style="width:48%;">
|
||||||
|
|||||||
@@ -1336,7 +1336,7 @@ Pointwise can outperform constant procedures
|
|||||||
|
|
||||||
<i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_10);"></i> $\text{QL}$ is convex: almost optimal convergence w.r.t. *convex aggregation* \eqref{eq_boa_opt_conv} <i class="fa fa-fw fa-check" style="color:var(--col_green_9);"></i> </br>
|
<i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_10);"></i> $\text{QL}$ is convex: almost optimal convergence w.r.t. *convex aggregation* \eqref{eq_boa_opt_conv} <i class="fa fa-fw fa-check" style="color:var(--col_green_9);"></i> </br>
|
||||||
|
|
||||||
For almost optimal convergence w.r.t. *selection* \eqref{eq_boa_opt_select} we need:
|
For almost optimal convergence w.r.t. *selection* \eqref{eq_boa_opt_select} we need [@gaillard2018efficient]:
|
||||||
|
|
||||||
**A1: Lipschitz Continuity**
|
**A1: Lipschitz Continuity**
|
||||||
|
|
||||||
@@ -1374,7 +1374,7 @@ for all $x_1,x_2 \in \mathbb{R}$ and $t>0$ that
|
|||||||
\mathbb{E}\left[ \left. \left( \alpha(\ell'(x_1, Y_t)(x_1 - x_2))^{2}\right)^{1/\beta} \right|\mathcal{F}_{t-1}\right]
|
\mathbb{E}\left[ \left. \left( \alpha(\ell'(x_1, Y_t)(x_1 - x_2))^{2}\right)^{1/\beta} \right|\mathcal{F}_{t-1}\right]
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
If $\beta=1$ we get strong-convexity, which implies weak exp-concavity
|
The strongest case is $\beta=1$ (Strong Convexity)
|
||||||
|
|
||||||
:::
|
:::
|
||||||
|
|
||||||
@@ -1397,9 +1397,9 @@ Let $Y$ be a univariate random variable with (Radon-Nikodym) $\nu$-density $f$,
|
|||||||
$\mathcal{Q}_p(x) = \mathbb{E}[ \text{QL}_p(x, Y) ]$
|
$\mathcal{Q}_p(x) = \mathbb{E}[ \text{QL}_p(x, Y) ]$
|
||||||
of $Y$ it holds for all $p\in(0,1)$ that
|
of $Y$ it holds for all $p\in(0,1)$ that
|
||||||
$\mathcal{Q}_p'' = f.$
|
$\mathcal{Q}_p'' = f.$
|
||||||
Additionally, if $f$ is a continuous Lebesgue-density with $f\geq\gamma>0$ for some constant $\gamma>0$ on its support $\text{spt}(f)$ then $\mathcal{Q}_p$ is $\gamma$-strongly convex, which implies satisfaction of condition
|
Additionally, if $f$ is a continuous Lebesgue-density with $f\geq\gamma>0$ for some constant $\gamma>0$ on its support $\text{spt}(f)$ then $\mathcal{Q}_p$ is $\gamma$-strongly convex.
|
||||||
|
|
||||||
**A2** with $\beta=1$ <i class="fa fa-fw fa-check" style="color:var(--col_green_9);"></i> @gaillard2018efficient
|
This implies satisfaction of condition **A2** with $\beta=1$ and $\alpha = \gamma / 2G^2$ <i class="fa fa-fw fa-check" style="color:var(--col_green_9);"></i> [@gaillard2018efficient]
|
||||||
|
|
||||||
:::
|
:::
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user