Add mcrps results html table
This commit is contained in:
@@ -1236,9 +1236,9 @@ for (i.p in 1:MO) {
|
||||
|
||||
table_out <- kbl(table, align = rep("c", ncol(table)))
|
||||
|
||||
for (cols in 1:ncol(table)) {
|
||||
for (j in 1:ncol(table)) {
|
||||
table_out <- table_out %>%
|
||||
column_spec(cols, background = table_col[, cols])
|
||||
column_spec(j, background = table_col[, j])
|
||||
}
|
||||
table_out %>%
|
||||
kable_material()
|
||||
@@ -1274,10 +1274,10 @@ for (i.p in 1:MO) {
|
||||
|
||||
table_out2 <- kableExtra::kbl(table2, align = rep("c", ncol(table2)))
|
||||
|
||||
for (cols in 1:ncol(table2)) {
|
||||
for (j in 1:ncol(table2)) {
|
||||
table_out2 <- table_out2 %>%
|
||||
column_spec(1 + cols,
|
||||
background = table_col2[, cols]
|
||||
column_spec(1 + j,
|
||||
background = table_col2[, j]
|
||||
)
|
||||
}
|
||||
|
||||
@@ -1838,12 +1838,143 @@ knitr::include_graphics("assets/mcrps_learning/smooth_best.svg")
|
||||
|
||||
::::
|
||||
|
||||
## Results
|
||||
## Results Orig
|
||||
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "400"}
|
||||
knitr::include_graphics("assets/mcrps_learning/tab_performance_sa.svg")
|
||||
```
|
||||
|
||||
## Results HTML
|
||||
|
||||
```{r, fig.align="center", echo=FALSE}
|
||||
load("assets/mcrps_learning/naive_table_df.rds")
|
||||
|
||||
table_naive <- naive_table_df %>%
|
||||
as_tibble() %>%
|
||||
head(1) %>%
|
||||
mutate_all(round, 4) %>%
|
||||
mutate_all(sprintf, fmt = "%#.3f") %>%
|
||||
kbl(
|
||||
bootstrap_options = "condensed",
|
||||
escape = FALSE,
|
||||
format = "html",
|
||||
booktabs = TRUE,
|
||||
align = c("c", rep("c", ncol(naive_table_df) - 1))
|
||||
) %>%
|
||||
kable_paper(full_width = TRUE) %>%
|
||||
kable_styling(font_size = 16)
|
||||
|
||||
|
||||
for (i in 1:ncol(naive_table_df)) {
|
||||
table_naive <- table_naive %>%
|
||||
column_spec(i,
|
||||
background = ifelse(
|
||||
is.na(naive_table_df["stat", i, drop = TRUE][-ncol(naive_table_df)]),
|
||||
cols[5, "grey"],
|
||||
col_scale2(
|
||||
naive_table_df["stat", i, drop = TRUE][-ncol(naive_table_df)],
|
||||
rng_t
|
||||
)
|
||||
),
|
||||
bold = i == which.min(naive_table_df["loss", ])
|
||||
)
|
||||
}
|
||||
|
||||
table_naive
|
||||
|
||||
load("assets/mcrps_learning/performance_data.rds")
|
||||
i <- 1
|
||||
j <- 1
|
||||
for (j in 1:3) {
|
||||
for (i in seq_len(nrow(performance_loss_tibble))) {
|
||||
if (loss_and_dm[i, j, "p.val"] < 0.001) {
|
||||
performance_loss_tibble[i, 2 + j] <- paste0(
|
||||
" ",
|
||||
performance_loss_tibble[i, 2 + j],
|
||||
"\\(^{***}\\)"
|
||||
)
|
||||
} else if (loss_and_dm[i, j, "p.val"] < 0.01) {
|
||||
performance_loss_tibble[i, 2 + j] <- paste0(
|
||||
" ",
|
||||
performance_loss_tibble[i, 2 + j], "\\(^{**}\\)"
|
||||
)
|
||||
} else if (loss_and_dm[i, j, "p.val"] < 0.05) {
|
||||
performance_loss_tibble[i, 2 + j] <- paste0(
|
||||
" ",
|
||||
performance_loss_tibble[i, 2 + j], "\\(^{*}\\)"
|
||||
)
|
||||
} else if (loss_and_dm[i, j, "p.val"] < 0.1) {
|
||||
performance_loss_tibble[i, 2 + j] <- paste0(
|
||||
" ",
|
||||
performance_loss_tibble[i, 2 + j], "\\({.}\\)"
|
||||
)
|
||||
} else {
|
||||
performance_loss_tibble[i, 2 + j] <- paste0(
|
||||
" ",
|
||||
performance_loss_tibble[i, 2 + j], " "
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
table_performance <- performance_loss_tibble %>%
|
||||
kbl(
|
||||
col.names = c(
|
||||
'Description',
|
||||
'Parameter Tuning',
|
||||
'   BOA',
|
||||
'   ML-Poly',
|
||||
'   EWA'
|
||||
),
|
||||
bootstrap_options = "condensed",
|
||||
# Dont replace any string, dataframe has to be valid latex code ...
|
||||
escape = FALSE,
|
||||
format = "html",
|
||||
align = c(rep("l", ncol(performance_loss_tibble)))
|
||||
) %>%
|
||||
kable_paper(full_width = TRUE) %>%
|
||||
row_spec(1:nrow(performance_loss_tibble), monospace = TRUE)
|
||||
|
||||
# %%
|
||||
|
||||
for (i in 3:ncol(performance_loss_tibble)) {
|
||||
bold_cells <- rep(FALSE, times = nrow(performance_loss_tibble))
|
||||
|
||||
loss <- loss_and_dm[, i - 2, "loss"]
|
||||
|
||||
table_performance <- table_performance %>%
|
||||
column_spec(i,
|
||||
background = c(
|
||||
col_scale2(
|
||||
loss_and_dm[, i - 2, "stat"],
|
||||
rng_t
|
||||
)
|
||||
),
|
||||
bold = loss == min(loss),
|
||||
)
|
||||
}
|
||||
|
||||
col_note_html <- '<span style="background-color: #66BA6A; padding: 2px 6px;">< -5</span> <span style="background-color: #7CC168; padding: 2px 6px;">-4</span> <span style="background-color: #91C866; padding: 2px 6px;">-3</span> <span style="background-color: #B0D363; padding: 2px 6px;">-2</span> <span style="background-color: #D8E05E; padding: 2px 6px;">-1</span> <span style="background-color: #FFED58; padding: 2px 6px;">0</span> <span style="background-color: #FFD145; padding: 2px 6px;">1</span> <span style="background-color: #FFB531; padding: 2px 6px;">2</span> <span style="background-color: #FC9733; padding: 2px 6px;">3</span> <span style="background-color: #F67744; padding: 2px 6px;">4</span> <span style="background-color: #EE5250; padding: 2px 6px;">> 5</span>'
|
||||
|
||||
signif <- "<span>.</span> p < 0.1; <span>*</span> p < 0.05; <span>**</span> p < 0.01; <span>***</span> p < 0.001;"
|
||||
|
||||
table_performance %>%
|
||||
footnote(
|
||||
general = c(
|
||||
"Coloring w.r.t. test statistic: ",
|
||||
col_note_html,
|
||||
signif
|
||||
),
|
||||
general_title = "",
|
||||
fixed_small_size = TRUE,
|
||||
escape = FALSE
|
||||
) %>%
|
||||
kable_styling(font_size = 16) |>
|
||||
row_spec(0, extra_css = "text-align: center")
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Results
|
||||
|
||||
```{r, warning=FALSE, fig.align="center", echo=FALSE, fig.width=12, fig.height=6}
|
||||
|
||||
Reference in New Issue
Block a user