diff --git a/25_07_phd_defense/assets/01_common.R b/25_07_phd_defense/assets/01_common.R
new file mode 100644
index 0000000..b14e29f
--- /dev/null
+++ b/25_07_phd_defense/assets/01_common.R
@@ -0,0 +1,31 @@
+text_size <- 16
+width <- 12
+height <- 6
+
+# col_lightgray <- "#e7e7e7"
+# col_blue <- "#F24159"
+# col_b_smooth <- "#F7CE14"
+# col_p_smooth <- "#58A64A"
+# col_pointwise <- "#772395"
+# col_b_constant <- "#BF236D"
+# col_p_constant <- "#F6912E"
+# col_optimum <- "#666666"
+
+# https://www.schemecolor.com/retro-rainbow-pastels.php
+col_lightgray <- "#e7e7e7"
+col_blue <- "#F24159"
+col_b_smooth <- "#5391AE"
+col_p_smooth <- "#85B464"
+col_pointwise <- "#E2D269"
+col_b_constant <- "#7A4E8A"
+col_p_constant <- "#BC677B"
+col_optimum <- "#666666"
+col_auto <- "#EA915E"
+
+T_selection <- c(32, 128, 512)
+
+# Lambda grid
+lamgrid <- c(-Inf, 2^(-15:25))
+
+# Gamma grid
+gammagrid <- sort(1 - sqrt(seq(0, 0.99, .05)))
diff --git a/25_07_phd_defense/assets/crps_learning/algos_changing.gif b/25_07_phd_defense/assets/crps_learning/algos_changing.gif
new file mode 100644
index 0000000..497b469
Binary files /dev/null and b/25_07_phd_defense/assets/crps_learning/algos_changing.gif differ
diff --git a/25_07_phd_defense/assets/crps_learning/algos_constant.gif b/25_07_phd_defense/assets/crps_learning/algos_constant.gif
new file mode 100644
index 0000000..0f535a5
Binary files /dev/null and b/25_07_phd_defense/assets/crps_learning/algos_constant.gif differ
diff --git a/25_07_phd_defense/assets/crps_learning/pre_vs_post.gif b/25_07_phd_defense/assets/crps_learning/pre_vs_post.gif
new file mode 100644
index 0000000..e6d09c8
Binary files /dev/null and b/25_07_phd_defense/assets/crps_learning/pre_vs_post.gif differ
diff --git a/25_07_phd_defense/assets/crps_learning/pre_vs_post_lambda.gif b/25_07_phd_defense/assets/crps_learning/pre_vs_post_lambda.gif
new file mode 100644
index 0000000..10a3715
Binary files /dev/null and b/25_07_phd_defense/assets/crps_learning/pre_vs_post_lambda.gif differ
diff --git a/25_07_phd_defense/assets/crps_learning/uneven_grid.gif b/25_07_phd_defense/assets/crps_learning/uneven_grid.gif
new file mode 100644
index 0000000..7f1e566
Binary files /dev/null and b/25_07_phd_defense/assets/crps_learning/uneven_grid.gif differ
diff --git a/25_07_phd_defense/assets/crps_learning/weights_lambda.gif b/25_07_phd_defense/assets/crps_learning/weights_lambda.gif
new file mode 100644
index 0000000..14a90ea
Binary files /dev/null and b/25_07_phd_defense/assets/crps_learning/weights_lambda.gif differ
diff --git a/25_07_phd_defense/logos_combined.xcf b/25_07_phd_defense/assets/logos_combined.xcf
similarity index 100%
rename from 25_07_phd_defense/logos_combined.xcf
rename to 25_07_phd_defense/assets/logos_combined.xcf
diff --git a/25_07_phd_defense/index.qmd b/25_07_phd_defense/index.qmd
index bab3782..315860c 100644
--- a/25_07_phd_defense/index.qmd
+++ b/25_07_phd_defense/index.qmd
@@ -1,18 +1,18 @@
---
title: "Data Science Methods for Forecasting in Energy and Economics"
date: 2025-07-10
-author:
+author:
- name: Jonathan Berrisch
affiliations:
- ref: hemf
-affiliations:
+affiliations:
- id: hemf
name: University of Duisburg-Essen, House of Energy Markets and Finance
-format:
+format:
revealjs:
embed-resources: true
footer: ""
- logo: logos_combined.png
+ logo: assets/logos_combined.png
theme: [default, clean.scss]
smaller: true
fig-format: svg
@@ -21,6 +21,10 @@ execute:
highlight-style: github
---
+
+
## Outline
::: {.hidden}
@@ -103,8 +107,6 @@ xaringanExtra::use_freezeframe(responsive = TRUE)
---
-class: center, middle, sydney-blue
-
# Motivation
name: motivation
@@ -334,11 +336,11 @@ The cumulative regret:
Popular loss functions for point forecasting `r Citet(my_bib, "gneiting2011making")`:
.pull-left[
- $\ell_2$-loss $\ell_2(x, y) = | x -y|^2$
- - optimal for mean prediction
+ - optimal for mean prediction
]
.pull-right[
-- $\ell_1$-loss $\ell_1(x, y) = | x -y|$
- - optimal for median predictions
+- $\ell_1$-loss $\ell_1(x, y) = | x -y|$
+ - optimal for median predictions
]
@@ -347,7 +349,7 @@ Popular loss functions for point forecasting `r Citet(my_bib, "gneiting2011makin
::: {.column width="48%"}
- $\ell_2$-loss $\ell_2(x, y) = | x -y|^2$
- - optimal for mean prediction
+ - optimal for mean prediction
:::
@@ -357,8 +359,8 @@ Popular loss functions for point forecasting `r Citet(my_bib, "gneiting2011makin
::: {.column width="48%"}
-- $\ell_1$-loss $\ell_1(x, y) = | x -y|$
- - optimal for median predictions
+- $\ell_1$-loss $\ell_1(x, y) = | x -y|$
+ - optimal for median predictions
:::
@@ -494,7 +496,7 @@ We apply Bernstein Online Aggregation (BOA). It lets us weaken the exp-concavity
It's strictly proper `r Citet(my_bib, "gneiting2007strictly")`.
-Using the CRPS, we can calculate time-adaptive weight $w_{t,k}$. However, what if the experts' performance is not uniform over all parts of the distribution?
+Using the CRPS, we can calculate time-adaptive weight $w_{t,k}$. However, what if the experts' performance is not uniform over all parts of the distribution?
The idea: utilize this relation:
@@ -550,7 +552,7 @@ The same algorithm satisfies that there exist a $C>0$ such that for $x>0$ it hol
\label{eq_boa_opt_select}
\end{equation}
-if $Y_t$ is bounded, the considered loss $\ell$ is convex $G$-Lipschitz and weak exp-concave in its first coordinate.
+if $Y_t$ is bounded, the considered loss $\ell$ is convex $G$-Lipschitz and weak exp-concave in its first coordinate.
This is for losses that satisfy **A1** and **A2**.
@@ -601,7 +603,7 @@ for all $x_1,x_2 \in \mathbb{R}$ and $t>0$ that
Pointwise can outperform constant procedures
-QL is convex but not exp-concave:
+QL is convex but not exp-concave:
`r fontawesome::fa("arrow-right")` Almost optimal convergence w.r.t. *convex aggregation* \eqref{eq_boa_opt_conv} `r fontawesome::fa("check", fill ="#00b02f")`
@@ -655,8 +657,8 @@ The gradient based fully adaptive Bernstein online aggregation (BOAG) applied po
$$\widehat{\mathcal{R}}_{t,\pi} = 2\overline{\widehat{\mathcal{R}}}^{\text{QL}}_{t,\pi}.$$
-If $Y_t|\mathcal{F}_{t-1}$ is bounded
-and has a pdf $f_t$ satifying $f_t>\gamma >0$ on its
+If $Y_t|\mathcal{F}_{t-1}$ is bounded
+and has a pdf $f_t$ satifying $f_t>\gamma >0$ on its
support $\text{spt}(f_t)$ then \ref{eq_boa_opt_select} holds with $\beta=1$ and
$$\widehat{\mathcal{R}}_{t,\min} = 2\overline{\widehat{\mathcal{R}}}^{\text{QL}}_{t,\min}$$.
@@ -698,15 +700,785 @@ Simple Example:
::: {.column width="48%"}
-foo
+::: {.panel-tabset}
+
+## CDFs
+
+```{r, echo = FALSE, fig.width=7, fig.height=6, fig.align='center', cache = FALSE}
+source("assets/01_common.R")
+load("assets/crps_learning/01_motivation_01.RData")
+ggplot(df, aes(x = x, y = y, xend = xend, yend = yend)) +
+ stat_function(
+ fun = pnorm, n = 10000,
+ args = list(mean = dev[2], sd = experts_sd[2]),
+ aes(col = "Expert 2"), size = 1.5
+ ) +
+ stat_function(
+ fun = pnorm, n = 10000,
+ args = list(mean = dev[1], sd = experts_sd[1]),
+ aes(col = "Expert 1"), size = 1.5
+ ) +
+ stat_function(
+ fun = pnorm,
+ n = 10000,
+ size = 1.5, aes(col = "DGP") # , linetype = "dashed"
+ ) +
+ geom_point(aes(col = "ECDF"), size = 1.5, show.legend = FALSE) +
+ geom_segment(aes(col = "ECDF")) +
+ geom_segment(data = tibble(
+ x_ = -5,
+ xend_ = min(y),
+ y_ = 0,
+ yend_ = 0
+ ), aes(x = x_, xend = xend_, y = y_, yend = yend_)) +
+ theme_minimal() +
+ theme(
+ text = element_text(size = text_size),
+ legend.position = "bottom",
+ legend.key.width = unit(1.5, "cm")
+ ) +
+ ylab("Probability p") +
+ xlab("Value") +
+ scale_colour_manual(NULL, values = c("#969696", "#252525", col_auto, col_blue)) +
+ guides(color = guide_legend(
+ nrow = 2,
+ byrow = FALSE # ,
+ # override.aes = list(
+ # size = c(1.5, 1.5, 1.5, 1.5)
+ # )
+ )) +
+ scale_x_continuous(limits = c(-5, 7.5))
+```
+
+## Weights
+
+```{r, echo = FALSE, fig.width=7, fig.height=6, fig.align='center', cache = FALSE}
+source("assets/01_common.R")
+load("assets/crps_learning/01_motivation_02.RData")
+ggplot() +
+ geom_line(data = weights[weights$var != "1Optimum", ], size = 1.5, aes(x = prob, y = val, col = var)) +
+ geom_line(
+ data = weights[weights$var == "1Optimum", ], size = 1.5, aes(x = prob, y = val, col = var) # , linetype = "dashed"
+ ) +
+ theme_minimal() +
+ theme(
+ text = element_text(size = text_size),
+ legend.position = "bottom",
+ legend.key.width = unit(1.5, "cm")
+ ) +
+ xlab("Probability p") +
+ ylab("Weight w") +
+ scale_colour_manual(
+ NULL,
+ values = c("#969696", col_pointwise, col_p_constant, col_p_smooth),
+ labels = modnames[-c(3, 5)]
+ ) +
+ guides(color = guide_legend(
+ ncol = 3,
+ byrow = FALSE,
+ title.hjust = 5,
+ # override.aes = list(
+ # linetype = c(rep("solid", 5), "dashed")
+ # )
+ )) +
+ ylim(c(0, 1))
+```
+
+::::
+
+:::
+
+:::
+
+## The Smoothing Procedure
+
+:::: {.columns}
+
+::: {.column width="48%"}
+
+We are using penalized cubic b-splines:
+
+Let $\varphi=(\varphi_1,\ldots, \varphi_L)$ be bounded basis functions on $(0,1)$ Then we approximate $w_{t,k}$ by
+
+\begin{align}
+w_{t,k}^{\text{smooth}} = \sum_{l=1}^L \beta_l \varphi_l = \beta'\varphi
+\end{align}
+
+with parameter vector $\beta$. The latter is estimated penalized $L_2$-smoothing which minimizes
+
+\begin{equation}
+ \| w_{t,k} - \beta' \varphi \|^2_2 + \lambda \| \mathcal{D}^{d} (\beta' \varphi) \|^2_2
+ \label{eq_function_smooth}
+\end{equation}
+
+with differential operator $\mathcal{D}$
+
+Smoothing can be applied ex-post or inside of the algorithm ( `r fontawesome::fa("arrow-right", fill ="#000000")` [Simulation](#simulation)).
+
+:::
+
+::: {.column width="2%"}
+
+:::
+
+::: {.column width="48%"}
+
+We receive the constant solution for high values of $\lambda$ when setting $d=1$
+
+
+
+
:::
::::
+# The Proposed CRPS-Learning Algorithm
+
+---
+
+## The Proposed CRPS-Learning Algorithm
+
+:::: {.columns}
+
+::: {.column width="48%"}
+
+**Initialization:**
+
+Array of expert predicitons: $\widehat{X}_{t,k,p}$
+
+Vector of Prediction targets: $Y_t$
+
+Starting Weights: $w_0=(w_{0,1},\ldots, w_{0,K})$,
+
+Penalization parameter: $\lambda\geq 0$
+
+B-spline and penalty matrices $B$ and $D$ on $\mathcal{P}= (p_1,\ldots,p_M)$
+
+Hat matrix: $$\mathcal{H} = B(B'B+ \lambda D'D)^{-1} B'$$
+
+Cumulative Regret: $R_{0,k} = 0$
+
+Range parameter: $E_{0,k}=0$
+
+:::
+
+::: {.column width="2%"}
+
+:::
+
+::: {.column width="48%"}
+
+**Core**:
+
+for(t in 1:T) { for(p in $\mathcal{P}$) {
+
+ $\widetilde{X}_{t,k}(p) = \sum_{k=1}^K w_{t-1,k,p} \widehat{X}_{t,k}(p)$ .grey[\# Prediction]
+
+ for(k in 1:K){
+
+ $r_{t,k,p} = \text{QL}_p^{\nabla}(\widehat{X}_{t,k}(p),Y_t) - \text{QL}_p^{\nabla}(\widetilde{X}_{t}(p),Y_t)$
+
+ $E_{t,k,p} = \max(E_{t-1,k,p}, |r_{t,k,p}|)$
+
+ $\eta_{t,k,p}=\min\left(1/2E_{t,k,p}, \sqrt{\log(K)/ \sum_{i=1}^t (r^2_{i, k,p})}\right)$
+
+ $R_{t,k,p} = R_{t-1,k,p} + \frac{1}{2} \left( r_{t,k,p} \left( 1+ \eta_{t,k,p} r_{t,k,p} \right) + 2E_{t,k,p} \mathbb{1}(\eta_{t,k,p}r_{t,k,p} > \frac{1}{2}) \right)$
+
+ $w_{t,k,p} = \eta_{t,k,p} \exp \left(- \eta_{t,k,p} R_{t,k,p} \right) w_{0,k,p} / \left( \frac{1}{K} \sum_{k = 1}^K \eta_{t,k,p} \exp \left( - \eta_{t,k,p} R_{t,k,p}\right) \right)$
+
+ }.grey[\#k]}.grey[\#p]
+
+ for(k in 1:K){
+
+ $w_{t,k} = \mathcal{H} w_{t,k}(\mathcal{P})$ .grey[\# Smoothing]
+
+} .grey[\#k]} .grey[\#t]
+
+:::
+
+::::
+
+## Simulation Study
+
+:::: {.columns}
+
+::: {.column width="48%"}
+
+Data Generating Process of the [simple probabilistic example](#simple_example)
+
+- Constant solution $\lambda \rightarrow \infty$
+- Pointwise Solution of the proposed BOAG
+- Smoothed Solution of the proposed BOAG
+ - Weights are smoothed during learning
+ - Smooth weights are used to calculate Regret, adjust weights, etc.
+- Smooth ex-post solution
+ - Weights are smoothed after the learning
+ - Algorithm always uses non-smoothed weights
+
+:::
+
+::: {.column width="2%"}
+
+:::
+
+::: {.column width="48%"}
+
+::: {.panel-tabset}
+
+## QL Deviation
+
+
+
+## CRPS vs. Lambda
+
+CRPS Values for different $\lambda$ (1000 runs)
+
+
+
+::::
+
+:::
+
+::::
+
+## Simulation Study
+
+The same simulation carried out for different algorithms (1000 runs):
+
+
+
+
+
+## Simulation Study
+
+:::: {.columns}
+
+::: {.column width="48%"}
+
+**New DGP:**
+
+\begin{align}
+ Y_t & \sim \mathcal{N}\left(\frac{\sin(0.005 \pi t )}{2},\,1\right) \\
+ \widehat{X}_{t,1} & \sim \widehat{F}_{1} = \mathcal{N}(-1,\,1) \\
+ \widehat{X}_{t,2} & \sim \widehat{F}_{2} = \mathcal{N}(3,\,4) \label{eq_dgp_sim2}
+\end{align}
+
+`r fontawesome::fa("arrow-right", fill ="#000000")` Changing optimal weights
+
+`r fontawesome::fa("arrow-right", fill ="#000000")` Single run example depicted aside
+
+`r fontawesome::fa("arrow-right", fill ="#000000")` No forgetting leads to long-term constant weights
+
+:::
+
+::: {.column width="2%"}
+
+:::
+
+::: {.column width="48%"}
+
+**Weights of expert 2**
+
+```{r, echo = FALSE, fig.width=7, fig.height=5, fig.align='center', cache = FALSE}
+load("assets/crps_learning/changing_weights.rds")
+mod_labs <- c("Optimum", "Pointwise", "Smooth", "Constant")
+names(mod_labs) <- c("TOptimum", "Pointwise", "Smooth", "Constant")
+colseq <- c(grey(.99), "orange", "red", "purple", "blue", "darkblue", "black")
+weights_preprocessed %>%
+ mutate(w = 1 - w) %>%
+ ggplot(aes(t, p, fill = w)) +
+ geom_raster(interpolate = TRUE) +
+ facet_grid(Mod ~ ., labeller = labeller(Mod = mod_labs)) +
+ theme_minimal() +
+ theme(
+ # plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"),
+ text = element_text(size = 15),
+ legend.key.height = unit(1, "inch")
+ ) +
+ scale_x_continuous(expand = c(0, 0)) +
+ xlab("Time t") +
+ scale_fill_gradientn(
+ limits = c(0, 1),
+ colours = colseq,
+ breaks = seq(0, 1, 0.2)
+ ) +
+ ylab("Weight w")
+```
+
+:::
+
+::::
+
+## Simulation Results
+
+The simulation using the new DGP carried out for different algorithms (1000 runs):
+
+
+
+
+
+## Possible Extensions
+
+:::: {.columns}
+
+::: {.column width="48%"}
+
+**Forgetting**
+
+- Only taking part of the old cumulative regret into account
+- Exponential forgetting of past regret
+
+\begin{align*}
+ R_{t,k} & = R_{t-1,k}(1-\xi) + \ell(\widetilde{F}_{t},Y_i) - \ell(\widehat{F}_{t,k},Y_i) \label{eq_regret_forget}
+\end{align*}
+
+**Fixed Shares** `r Citet(my_bib, "herbster1998tracking")`
+
+ - Adding fixed shares to the weights
+ - Shrinkage towards a constant solution
+
+\begin{align*}
+ \widetilde{w}_{t,k} = \rho \frac{1}{K} + (1-\rho) w_{t,k}
+ \label{fixed_share_simple}.
+\end{align*}
+
+:::
+
+::: {.column width="2%"}
+
+:::
+
+::: {.column width="48%"}
+
+**Non-Equidistant Knots**
+
+- Non-equidistant spline-basis could be used
+- Potentially improves the tail-behavior
+- Destroys shrinkage towards constant
+
+
+
+
+
+:::
+
+::::
+
+## Application Study: Overview
+
+:::: {.columns}
+
+::: {.column width="29%"}
+
+Data:
+
+- Forecasting European emission allowances (EUA)
+- Daily month-ahead prices
+- Jan 13 - Dec 20 (Phase III, 2092 Obs)
+
+Combination methods:
+
+- Naive, BOAG, EWAG, ML-PolyG, BMA
+
+Tuning paramter grids:
+
+- Smoothing Penalty: $\Lambda= \{0\}\cup \{2^x|x\in \{-4,-3.5,\ldots,12\}\}$
+- Learning Rates: $\mathcal{E}= \{2^x|x\in \{-1,-0.5,\ldots,9\}\}$
+
+:::
+
+::: {.column width="2%"}
+
+:::
+
+::: {.column width="69%"}
+
+```{r, echo = FALSE, fig.width=7, fig.height=5, fig.align='center', cache = FALSE}
+load("assets/crps_learning/overview_data.rds")
+
+data %>%
+ ggplot(aes(x = Date, y = value)) +
+ geom_line(size = 1, col = col_blue) +
+ theme_minimal() +
+ ylab("Value") +
+ facet_wrap(. ~ name, scales = "free", ncol = 1) +
+ theme(
+ text = element_text(size = 15),
+ strip.background = element_blank(),
+ strip.text.x = element_blank()
+ ) -> p1
+
+data %>%
+ ggplot(aes(x = value)) +
+ geom_histogram(aes(y = ..density..), size = 1, fill = col_blue, bins = 50) +
+ ylab("Density") +
+ xlab("Value") +
+ theme_minimal() +
+ theme(
+ strip.background = element_rect(fill = col_lightgray, colour = col_lightgray),
+ text = element_text(size = 15)
+ ) +
+ facet_wrap(. ~ name, scales = "free", ncol = 1, strip.position = "right") -> p2
+
+overview <- cowplot::plot_grid(plotlist = list(p1, p2), align = "hv", axis = "tblr", rel_widths = c(0.65, 0.35))
+overview
+```
+
+:::
+
+::::
+
+## Application Study: Experts
+
+Simple exponential smoothing with additive errors (**ETS-ANN**):
+
+\begin{align*}
+Y_{t} = l_{t-1} + \varepsilon_t \quad \text{with} \quad l_t = l_{t-1} + \alpha \varepsilon_t \quad \text{and} \quad \varepsilon_t \sim \mathcal{N}(0,\sigma^2)
+\end{align*}
+
+Quantile regression (**QuantReg**): For each $p \in \mathcal{P}$ we assume:
+
+\begin{align*}
+F^{-1}_{Y_t}(p) = \beta_{p,0} + \beta_{p,1} Y_{t-1} + \beta_{p,2} |Y_{t-1}-Y_{t-2}|
+\end{align*}
+
+ARIMA(1,0,1)-GARCH(1,1) with Gaussian errors (**ARMA-GARCH**):
+
+\begin{align*}
+Y_{t} = \mu + \phi(Y_{t-1}-\mu) + \theta \varepsilon_{t-1} + \varepsilon_t \quad \text{with} \quad \varepsilon_t = \sigma_t Z, \quad \sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2 \quad \text{and} \quad Z_t \sim \mathcal{N}(0,1)
+\end{align*}
+
+ARIMA(0,1,0)-I-EGARCH(1,1) with Gaussian errors (**I-EGARCH**):
+
+\begin{align*}
+Y_{t} = \mu + Y_{t-1} + \varepsilon_t \quad \text{with} \quad \varepsilon_t = \sigma_t Z, \quad \log(\sigma_t^2) = \omega + \alpha Z_{t-1}+ \gamma (|Z_{t-1}|-\mathbb{E}|Z_{t-1}|) + \beta \log(\sigma_{t-1}^2) \quad \text{and} \quad Z_t \sim \mathcal{N}(0,1)
+\end{align*}
+
+ARIMA(0,1,0)-GARCH(1,1) with student-t errors (**I-GARCHt**):
+
+\begin{align*}
+Y_{t} = \mu + Y_{t-1} + \varepsilon_t \quad \text{with} \quad \varepsilon_t = \sigma_t Z, \quad \sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2 \quad \text{and} \quad Z_t \sim t(0,1, \nu)
+\end{align*}
+## Results
+
+::: {.panel-tabset}
+
+## Significance
+
+```{r, echo = FALSE, fig.width=7, fig.height=5.5, fig.align='center', cache = FALSE, results='asis'}
+load("assets/crps_learning/bernstein_application_study_estimations+learnings_rev1.RData")
+
+quantile_loss <- function(X, y, tau) {
+ t(t(y - X) * tau) * (y - X > 0) + t(t(X - y) * (1 - tau)) * (y - X < 0)
+}
+QL <- FCSTN * NA
+for (k in 1:dim(QL)[1]) {
+ QL[k, , ] <- quantile_loss(FCSTN[k, , ], as.numeric(yoos), Qgrid)
+}
+
+## TABLE AREA
+
+KK <- length(mnames)
+TTinit <- 1 ## without first, as all comb. are uniform
+RQL <- apply(QL[1:KK, -c(1:TTinit), ], c(1, 3), mean)
+dimnames(RQL) <- list(mnames, Qgrid)
+RQLm <- apply(RQL, c(1), mean, na.rm = TRUE)
+# sort(RQLm - RQLm[K + 1])
+##
+qq <- apply(QL[1:KK, -c(1:TTinit), ], c(1, 2), mean)
+# t.test(qq[K + 1, ] - qq[K + 3, ])
+# t.test(qq[K + 1, ] - qq[K + 4, ])
+
+
+library(xtable)
+Pall <- numeric(KK)
+for (i in 1:KK) Pall[i] <- t.test(qq[K + 1, ] - qq[i, ], alternative = "greater")$p.val
+
+Mall <- (RQLm - RQLm[K + 1]) * 10000
+Mout <- matrix(Mall[-c(1:(K + 3))], 5, 6)
+dimnames(Mout) <- list(moname, mtname)
+
+Pallout <- format(round(Pall, 3), nsmall = 3)
+Pallout[Pallout == "0.000"] <- "<.001"
+Pallout[Pallout == "1.000"] <- ">.999"
+
+MO <- K
+IDX <- c(1:K)
+OUT <- t(Mall[IDX])
+OUT.num <- OUT
+class(OUT.num) <- "numeric"
+
+xxx <- OUT.num
+xxxx <- OUT
+table <- OUT
+table_col <- OUT
+i.p <- 1
+for (i.p in 1:MO) {
+ xmax <- -min(Mall) * 5 # max(Mall)
+ xmin <- min(Mall)
+ cred <- rev(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .8, .5)) # , .5,0,0,0,1,1,1) ## red
+ cgreen <- rev(c(.5, .5, .55, .6, .65, .7, .75, .8, .85, .9, .95, 1, 1, .9)) # , .5,0,1,1,1,0,0) ## green
+ cblue <- rev(c(.55, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5)) # , .5,1,1,0,0,0,1) ## blue
+ crange <- c(xmin, xmax) ## range
+ ## colors in plot:
+ fred <- round(approxfun(seq(crange[1], crange[2], length = length(cred)), cred)(pmin(xxx[, i.p], xmax)), 3)
+ fgreen <- round(approxfun(seq(crange[1], crange[2], length = length(cgreen)), cgreen)(pmin(xxx[, i.p], xmax)), 3)
+ fblue <- round(approxfun(seq(crange[1], crange[2], length = length(cblue)), cblue)(pmin(xxx[, i.p], xmax)), 3)
+ tmp <- format(round(xxx[, i.p], 3), nsmall = 3)
+ xxxx[, i.p] <- paste("\\cellcolor[rgb]{", fred, ",", fgreen, ",", fblue, "}", tmp, " {\\footnotesize (", Pallout[IDX[i.p]], ")}", sep = "")
+ table[, i.p] <- paste0(tmp, " (", Pallout[i.p], ")")
+ table_col[, i.p] <- rgb(fred, fgreen, fblue, maxColorValue = 1)
+} # i.p
+
+table_out <- kbl(table, align = rep("c", ncol(table)))
+
+for (cols in 1:ncol(table)) {
+ table_out <- table_out %>%
+ column_spec(cols, background = table_col[, cols])
+}
+table_out %>%
+ kable_material()
+```
+
+```{r, echo = FALSE, fig.width=7, fig.height=5.5, fig.align='center', cache = FALSE, results='asis'}
+MO <- 6
+OUT <- Mout
+OUT.num <- OUT
+class(OUT.num) <- "numeric"
+
+xxx <- OUT.num
+xxxx <- OUT
+i.p <- 1
+table2 <- OUT
+table_col2 <- OUT
+for (i.p in 1:MO) {
+ xmax <- -min(Mall) * 5 # max(Mall)
+ xmin <- min(Mall)
+ cred <- rev(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .8, .5)) # , .5,0,0,0,1,1,1) ## red
+ cgreen <- rev(c(.5, .5, .55, .6, .65, .7, .75, .8, .85, .9, .95, 1, 1, .9)) # , .5,0,1,1,1,0,0) ## green
+ cblue <- rev(c(.55, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5)) # , .5,1,1,0,0,0,1) ## blue
+ crange <- c(xmin, xmax) ## range
+ ## colors in plot:
+ fred <- round(approxfun(seq(crange[1], crange[2], length = length(cred)), cred)(pmin(xxx[, i.p], xmax)), 3)
+ fgreen <- round(approxfun(seq(crange[1], crange[2], length = length(cgreen)), cgreen)(pmin(xxx[, i.p], xmax)), 3)
+ fblue <- round(approxfun(seq(crange[1], crange[2], length = length(cblue)), cblue)(pmin(xxx[, i.p], xmax)), 3)
+ tmp <- format(round(xxx[, i.p], 3), nsmall = 3)
+ xxxx[, i.p] <- paste("\\cellcolor[rgb]{", fred, ",", fgreen, ",", fblue, "}", tmp, " {\\footnotesize (", Pallout[K + 3 + 5 * (i.p - 1) + 1:5], ")}", sep = "")
+ table2[, i.p] <- paste0(tmp, " (", Pallout[K + 3 + 5 * (i.p - 1) + 1:5], ")")
+ table_col2[, i.p] <- rgb(fred, fgreen, fblue, maxColorValue = 1)
+} # i.p
+
+table_out2 <- kableExtra::kbl(table2, align = rep("c", ncol(table2)))
+
+for (cols in 1:ncol(table2)) {
+ table_out2 <- table_out2 %>%
+ column_spec(1 + cols,
+ background = table_col2[, cols]
+ )
+}
+
+table_out2 %>%
+ kable_material() %>%
+ column_spec(1, bold = T)
+```
+
+## QL
+
+```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
+
+##### Performance across probabilities
+M <- length(mnames)
+Msel <- c(1:K, K + 1, K + 1 + 2 + 1:4 * 5 - 2) ## experts + naive + smooth
+modnames <- mnames[Msel]
+
+tCOL <- c(
+ "#E6CC00", "#CC6600", "#E61A1A", "#99004D", "#F233BF",
+ "#666666", "#0000CC", "#1A80E6", "#1AE680", "#00CC00"
+)
+
+
+t(RQL) %>%
+ as_tibble() %>%
+ select(Naive) %>%
+ mutate(Naive = 0) %>%
+ mutate(p = 1:99 / 100) %>%
+ pivot_longer(-p, values_to = "Loss differences") -> dummy
+
+t(RQL) %>%
+ as_tibble() %>%
+ select(mnames[Msel]) %>%
+ mutate(p = 1:99 / 100) %>%
+ pivot_longer(!p & !Naive) %>%
+ mutate(`Loss differences` = value - Naive) %>%
+ select(-value, -Naive) %>%
+ rbind(dummy) %>%
+ mutate(
+ p = as.numeric(p),
+ name = stringr::str_replace(name, "-P-smooth", ""),
+ name = factor(name, levels = stringr::str_replace(mnames[Msel], "-P-smooth", ""), ordered = T),
+ `Loss differences` = `Loss differences` * 1000
+ ) %>%
+ ggplot(aes(x = p, y = `Loss differences`, colour = name)) +
+ geom_line(linewidth = 1) +
+ theme_minimal() +
+ theme(
+ text = element_text(size = text_size),
+ legend.position = "bottom"
+ ) +
+ xlab("Probability p") +
+ scale_color_manual(NULL, values = tCOL) +
+ guides(colour = guide_legend(nrow = 2, byrow = TRUE))
+```
+
+## Cumulative Loss Difference
+
+```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
+DQL <- t(apply(apply(QL[1:KK, -c(1:TTinit), ], c(1, 2), mean), 1, cumsum))
+
+rownames(DQL) <- mnames
+
+t(DQL) %>%
+ as_tibble() %>%
+ select(Naive) %>%
+ mutate(
+ `Difference of cumulative loss` = 0,
+ Date = ytime[-c(1:(TT + TTinit + 1))],
+ name = "Naive"
+ ) %>%
+ select(-Naive) -> dummy
+
+
+data <- t(DQL) %>%
+ as_tibble() %>%
+ select(mnames[Msel]) %>%
+ mutate(Date = ytime[-c(1:(TT + TTinit + 1))]) %>%
+ pivot_longer(!Date & !Naive) %>%
+ mutate(`Difference of cumulative loss` = value - Naive) %>%
+ select(-value, -Naive) %>%
+ rbind(dummy) %>%
+ mutate(
+ name = stringr::str_replace(name, "-P-smooth", ""),
+ name = factor(name, levels = stringr::str_replace(mnames[Msel], "-P-smooth", ""))
+ )
+
+data %>%
+ ggplot(aes(x = Date, y = `Difference of cumulative loss`, colour = name)) +
+ geom_line(size = 1) +
+ theme_minimal() +
+ theme(
+ text = element_text(size = text_size),
+ legend.position = "bottom"
+ ) +
+ scale_color_manual(NULL, values = tCOL) +
+ guides(colour = guide_legend(nrow = 2, byrow = TRUE))
+```
+
+## Weights (BOAG P-Smooth)
+
+```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
+load("assets/crps_learning/weights_data.RData")
+weights_data %>%
+ ggplot(aes(Date, p, fill = w)) +
+ geom_raster(interpolate = TRUE) +
+ facet_grid(Mod ~ .) +
+ theme_minimal() +
+ theme(
+ plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "cm"),
+ text = element_text(size = text_size),
+ legend.key.height = unit(0.9, "inch")
+ ) +
+ ylab("p") +
+ scale_fill_gradientn(
+ limits = c(0, 1),
+ colours = colseq,
+ breaks = seq(0, 1, 0.2)
+ ) +
+ scale_x_date(expand = c(0, 0))
+```
+
+## Weights (Last)
+
+```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
+load("assets/crps_learning/weights_example.RData")
+weights %>%
+ ggplot(aes(x = p, y = weights, col = Model)) +
+ geom_line(size = 1.5) +
+ theme_minimal() +
+ theme(
+ plot.margin = unit(c(0.2, 0.3, 0.2, 0.2), "cm"),
+ text = element_text(size = text_size),
+ legend.position = "bottom",
+ legend.title = element_blank(),
+ panel.spacing = unit(1.5, "lines")
+ ) +
+ scale_color_manual(NULL, values = tCOL[1:K]) +
+ facet_grid(. ~ K)
+```
+
+::::
+
+## Wrap-Up
+
+:::: {.columns}
+
+::: {.column width="48%"}
+
+Potential Downsides:
+- Pointwise optimization can induce quantile crossing
+ - Can be solved by sorting the predictions
+
+Upsides:
+- Pointwise learning outperforms the Naive solution significantly
+- Online learning is much faster than batch methods
+- Smoothing further improves the predictive performance
+- Asymptotically not worse than the best convex combination
+
+:::
+
+::: {.column width="2%"}
+
+:::
+
+::: {.column width="48%"}
+
+Important:
+
+- The choice of the learning rate is crucial
+- The loss function has to meet certain criteria
+
+The [`r fontawesome::fa("github")` profoc](https://profoc.berrisch.biz/) R Package:
+
+- Implements all algorithms discussed above
+- Is written using RcppArmadillo `r fontawesome::fa("arrow-right", fill ="#000000")` its fast
+- Accepts vectors for most parameters
+ - The best parameter combination is chosen online
+- Implements
+ - Forgetting, Fixed Share
+ - Different loss functions + gradients
+
+:::
+
+::::
+
+:::: {.notes}
+
+Execution Times:
+
+T = 5000
+
+Opera:
+
+Ml-Poly > 157 ms
+Boa > 212 ms
+
+Profoc:
+
+Ml-Poly > 17
+BOA > 16
## Columns Template
@@ -731,6 +1503,19 @@ foo
::::
+## Paneltabset Template
+
+::: {.panel-tabset}
+
+## Baz
+
+Bar
+
+## Bam
+
+Foo
+
+::::
# References
diff --git a/25_07_phd_defense/logos_combined.png b/25_07_phd_defense/logos_combined.png
deleted file mode 100644
index a6b9b9b..0000000
Binary files a/25_07_phd_defense/logos_combined.png and /dev/null differ