Knot placement details, cross referencing etc.
This commit is contained in:
@@ -169,3 +169,19 @@
|
|||||||
issn = {2666-5468},
|
issn = {2666-5468},
|
||||||
keywords = {Electricity peak load, Generalized additive models, Artificial neural networks, Prediction, Combination, Weather effects, Seasonality}
|
keywords = {Electricity peak load, Generalized additive models, Artificial neural networks, Prediction, Combination, Weather effects, Seasonality}
|
||||||
}
|
}
|
||||||
|
@book{johnson1995continuous,
|
||||||
|
title = {Continuous univariate distributions, volume 2},
|
||||||
|
author = {Johnson, Norman L and Kotz, Samuel and Balakrishnan, Narayanaswamy},
|
||||||
|
year = {1995},
|
||||||
|
publisher = {John wiley \& sons},
|
||||||
|
volume = {289}
|
||||||
|
}
|
||||||
|
@article{li2022general,
|
||||||
|
title = {General P-splines for non-uniform B-splines},
|
||||||
|
author = {Li, Zheyuan and Cao, Jiguo},
|
||||||
|
year = {2022},
|
||||||
|
journal = {arXiv preprint},
|
||||||
|
publisher = {Cornell University},
|
||||||
|
doi = {10.48550/arXiv.2201.06808},
|
||||||
|
url = {https://arxiv.org/abs/2201.06808}
|
||||||
|
}
|
||||||
76
index.qmd
76
index.qmd
@@ -36,7 +36,7 @@ revealjs-plugins:
|
|||||||
- pointer
|
- pointer
|
||||||
---
|
---
|
||||||
|
|
||||||
## Outline
|
## Outline {.center}
|
||||||
|
|
||||||
<!--
|
<!--
|
||||||
Render with: quarto preview /home/jonathan/git/PHD-Presentation/25_07_phd_defense/index.qmd --no-browser --port 6074
|
Render with: quarto preview /home/jonathan/git/PHD-Presentation/25_07_phd_defense/index.qmd --no-browser --port 6074
|
||||||
@@ -48,20 +48,17 @@ $$
|
|||||||
$$
|
$$
|
||||||
:::
|
:::
|
||||||
|
|
||||||
<br/>
|
|
||||||
|
|
||||||
:::: {style="font-size: 150%;"}
|
:::: {style="font-size: 150%;"}
|
||||||
|
|
||||||
<i class="fa fa-fw fa-rocket" style="color:var(--col_grey_9);"></i>   [Research Motivation](#motivation)
|
<i class="fa fa-fw fa-rocket" style="color:var(--col_grey_9);"></i>   [Research Motivation](#motivation)
|
||||||
|
|
||||||
<i class="fa fa-fw fa-book" style="color:var(--col_grey_9);"></i>   Overview of the Thesis
|
<i class="fa fa-fw fa-book" style="color:var(--col_grey_9);"></i>   [Overview of the Thesis](#sec-overview)
|
||||||
|
|
||||||
<i class="fa fa-fw fa-code-merge" style="color:var(--col_grey_9);"></i>   Online Aggregation
|
<i class="fa fa-fw fa-layer-group" style="color:var(--col_grey_9);"></i>   [Online Aggregation](#sec-crps-learning)
|
||||||
|
|
||||||
<i class="fa fa-fw fa-fire-flame-simple" style="color:var(--col_grey_9);"></i>   Probabilistic Forecasting of European Carbon and Energy Prices
|
<i class="fa fa-fw fa-chart-line" style="color:var(--col_grey_9);"></i>   [Probabilistic Forecasting of European Carbon and Energy Prices](#sec-voldep)
|
||||||
|
|
||||||
<i class="fa fa-fw fa-newspaper" style="color:var(--col_grey_9);"></i>   Contributions & Outlook
|
|
||||||
|
|
||||||
|
<i class="fa fa-fw fa-newspaper" style="color:var(--col_grey_9);"></i>   [Contributions & Outlook](#sec-conclusion)
|
||||||
|
|
||||||
:::
|
:::
|
||||||
|
|
||||||
@@ -101,7 +98,7 @@ col_yellow <- "#FCE135"
|
|||||||
## Motivation
|
## Motivation
|
||||||
|
|
||||||
|
|
||||||
## Overview of the Thesis {transition="fade" transition-speed="slow"}
|
## Overview of the Thesis {transition="fade" transition-speed="slow" #sec-overview}
|
||||||
|
|
||||||
<table style="width: 100%; border-collapse: separate; border-spacing: 0 1em; border: none;">
|
<table style="width: 100%; border-collapse: separate; border-spacing: 0 1em; border: none;">
|
||||||
<tr style="border: none;">
|
<tr style="border: none;">
|
||||||
@@ -589,7 +586,7 @@ ggplot() +
|
|||||||
::::
|
::::
|
||||||
|
|
||||||
|
|
||||||
# CRPS Learning
|
# CRPS Learning {#sec-crps-learning}
|
||||||
|
|
||||||
Berrisch, J., & Ziel, F. [-@BERRISCH2023105221]. *Journal of Econometrics*, 237(2), 105221.
|
Berrisch, J., & Ziel, F. [-@BERRISCH2023105221]. *Journal of Econometrics*, 237(2), 105221.
|
||||||
|
|
||||||
@@ -2627,27 +2624,21 @@ chart = {
|
|||||||
|
|
||||||
::: {.column width="48%"}
|
::: {.column width="48%"}
|
||||||
|
|
||||||
Basis specification `b_smooth_pr` is internally passed to `make_basis_mats()`:
|
Non-central beta distribution @johnson1995continuous:
|
||||||
|
|
||||||
```{r, echo = TRUE, eval = FALSE, cache = TRUE}
|
::: {style="font-size: 70%;"}
|
||||||
mod <- online(
|
|
||||||
y = Y,
|
\begin{equation*}
|
||||||
experts = experts,
|
\mathcal{B}(x, a, b, c) = \sum_{j=0}^{\infty} e^{-c/2} \frac{\left( \frac{c}{2} \right)^j}{j!} I_x \left( a + j , b \right)
|
||||||
tau = 1:99 / 100,
|
\end{equation*}
|
||||||
b_smooth_pr = list(
|
|
||||||
knots = 9,
|
::::
|
||||||
mu = 0.3, # NEW
|
|
||||||
sigma = 1,
|
```{r, fig.align="center", echo=FALSE, out.width = "1000px", cache = TRUE}
|
||||||
nonc = 0,
|
knitr::include_graphics("assets/mcrps_learning/knot_placement.svg")
|
||||||
tailweight = 1,
|
|
||||||
deg = 3
|
|
||||||
)
|
|
||||||
)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Knots are distributed using the generalized beta distribution.
|
<i class="fa fa-fw fa-triangle-exclamation" style="color:var(--col_orange_9);"></i> Penalty and $\lambda$ need to be adjusted accordingly @li2022general
|
||||||
|
|
||||||
TODO: Add actual algorithm to backup slides
|
|
||||||
|
|
||||||
:::
|
:::
|
||||||
|
|
||||||
@@ -2657,6 +2648,27 @@ TODO: Add actual algorithm to backup slides
|
|||||||
|
|
||||||
::: {.column width="48%"}
|
::: {.column width="48%"}
|
||||||
|
|
||||||
|
Using non equidistant knots in `profoc` is straightforward:
|
||||||
|
|
||||||
|
```{r, echo = TRUE, eval = FALSE, cache = TRUE}
|
||||||
|
mod <- online(
|
||||||
|
y = Y,
|
||||||
|
experts = experts,
|
||||||
|
tau = 1:99 / 100,
|
||||||
|
b_smooth_pr = list(
|
||||||
|
knots = 9,
|
||||||
|
mu = 0.3,
|
||||||
|
sigma = 1,
|
||||||
|
nonc = 0,
|
||||||
|
tailweight = 1,
|
||||||
|
deg = 3
|
||||||
|
)
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
Basis specification `b_smooth_pr` is internally passed to `make_basis_mats()`.
|
||||||
|
|
||||||
|
<i class="fa fa-fw fa-check" style="color:var(--col_green_9);"></i> Profoc adjusts penatly and $\lambda$
|
||||||
|
|
||||||
:::
|
:::
|
||||||
|
|
||||||
@@ -2716,7 +2728,7 @@ Pubications:
|
|||||||
|
|
||||||
::::
|
::::
|
||||||
|
|
||||||
# Modeling Volatility and Dependence of European Carbon and Energy Prices
|
# Modeling Volatility and Dependence of European Carbon and Energy Prices {#sec-voldep}
|
||||||
|
|
||||||
Berrisch, J., Pappert, S., Ziel, F., & Arsova, A. (2023). *Finance Research Letters*, 52, 103503.
|
Berrisch, J., Pappert, S., Ziel, F., & Arsova, A. (2023). *Finance Research Letters*, 52, 103503.
|
||||||
|
|
||||||
@@ -3482,6 +3494,10 @@ Accounting for heteroscedasticity or stabilizing the variance via log transforma
|
|||||||
|
|
||||||
::::
|
::::
|
||||||
|
|
||||||
## Conclusion
|
## Contributions and Outlook {#sec-conclusion}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## References
|
## References
|
||||||
Reference in New Issue
Block a user