A thousand minor improvements
This commit is contained in:
File diff suppressed because one or more lines are too long
|
Before Width: | Height: | Size: 64 KiB After Width: | Height: | Size: 84 KiB |
1382
assets/hecf_logo_reduced.svg
Normal file
1382
assets/hecf_logo_reduced.svg
Normal file
File diff suppressed because one or more lines are too long
|
After Width: | Height: | Size: 64 KiB |
13
assets/wiwi_logo.svg
Normal file
13
assets/wiwi_logo.svg
Normal file
File diff suppressed because one or more lines are too long
|
After Width: | Height: | Size: 80 KiB |
14
assets/wiwi_signet.svg
Normal file
14
assets/wiwi_signet.svg
Normal file
@@ -0,0 +1,14 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="326.464 209.764 188.9641 175.744" width="188.964px" height="175.744px">
|
||||
<defs>
|
||||
<style>.default{fill:#004c93;}</style>
|
||||
</defs>
|
||||
<path class="default" d="M500.566,376.836H335.134V218.44h158.4v31.05a2.05,2.05,0,0,0,1.33,1.919l6.527,2.447a.611.611,0,0,0,.215.041.6.6,0,0,0,.6-.6V214.1a4.336,4.336,0,0,0-4.336-4.336H330.8a4.336,4.336,0,0,0-4.336,4.336V381.172a4.337,4.337,0,0,0,4.336,4.336H500.566a1.639,1.639,0,0,0,1.639-1.639v-5.4A1.638,1.638,0,0,0,500.566,376.836Z" transform="matrix(1, 0, 0, 1, 3.552713678800501e-15, 0)"/>
|
||||
<g transform="matrix(0.571585, 0, 0, -0.572302, 342.738, 530.144)" style="">
|
||||
<path d="M 0.548 -0.232 Q 0.548 -0.166 0.536 -0.127 Q 0.524 -0.088 0.493 -0.056 Q 0.423 0.017 0.295 0.017 Q 0.156 0.017 0.1 -0.07 Q 0.066 -0.123 0.066 -0.232 L 0.066 -0.665 Q 0.066 -0.679 0.069 -0.683 Q 0.073 -0.686 0.087 -0.686 L 0.182 -0.686 Q 0.2 -0.686 0.202 -0.677 Q 0.203 -0.673 0.203 -0.665 L 0.203 -0.232 Q 0.203 -0.152 0.223 -0.126 Q 0.25 -0.091 0.305 -0.091 Q 0.364 -0.091 0.39 -0.123 Q 0.416 -0.156 0.416 -0.23 L 0.416 -0.665 Q 0.416 -0.683 0.425 -0.685 Q 0.429 -0.686 0.437 -0.686 L 0.527 -0.686 Q 0.541 -0.686 0.544 -0.683 Q 0.548 -0.679 0.548 -0.665 Z M 1.227 -0.342 Q 1.227 -0.089 1.1 -0.025 Q 1.051 0 0.937 0 L 0.78 0 Q 0.762 0 0.76 -0.009 Q 0.759 -0.013 0.759 -0.021 L 0.759 -0.665 Q 0.759 -0.683 0.768 -0.685 Q 0.772 -0.686 0.78 -0.686 L 0.937 -0.686 Q 1.009 -0.686 1.041 -0.68 Q 1.227 -0.645 1.227 -0.342 Z M 1.083 -0.336 Q 1.083 -0.514 1.02 -0.557 Q 0.991 -0.577 0.931 -0.577 L 0.896 -0.577 L 0.896 -0.109 L 0.931 -0.109 Q 1.006 -0.109 1.035 -0.135 Q 1.083 -0.178 1.083 -0.336 Z M 1.789 -0.675 Q 1.789 -0.672 1.787 -0.662 L 1.767 -0.594 Q 1.762 -0.577 1.745 -0.577 L 1.551 -0.577 L 1.551 -0.413 L 1.718 -0.413 Q 1.736 -0.413 1.738 -0.404 Q 1.739 -0.4 1.739 -0.392 L 1.739 -0.325 Q 1.739 -0.307 1.73 -0.305 Q 1.726 -0.304 1.718 -0.304 L 1.551 -0.304 L 1.551 -0.109 L 1.761 -0.109 Q 1.779 -0.109 1.781 -0.1 Q 1.782 -0.096 1.782 -0.088 L 1.782 -0.021 Q 1.782 -0.007 1.779 -0.003 Q 1.775 0 1.761 0 L 1.435 0 Q 1.421 0 1.418 -0.003 Q 1.414 -0.007 1.414 -0.021 L 1.414 -0.665 Q 1.414 -0.679 1.418 -0.683 Q 1.421 -0.686 1.435 -0.686 L 1.769 -0.686 Q 1.789 -0.686 1.789 -0.675 Z" transform="matrix(135, 0, 0, -135, 0, 427)" style="fill: rgb(0, 76, 147); text-wrap-mode: nowrap;"/>
|
||||
</g>
|
||||
<path d="M 412.843 305.231 C 412.843 305.586 412.754 305.942 412.665 306.297 L 399.716 363.4 C 399.45 364.466 398.828 364.999 397.764 364.999 L 389.87 364.999 C 389.161 364.999 388.717 364.91 388.451 364.733 C 388.185 364.556 388.007 364.111 387.919 363.4 L 382.154 333.117 C 381 327.344 380.29 322.371 380.024 318.108 C 379.759 321.038 379.316 323.704 378.872 326.279 C 378.694 327.167 378.428 328.499 378.162 330.186 C 377.896 330.63 377.719 331.696 377.541 333.205 L 370.711 363.4 C 370.535 364.199 370.357 364.644 370.179 364.733 C 370.002 364.91 369.557 364.999 368.76 364.999 L 360.777 364.999 C 359.98 364.999 359.536 364.91 359.358 364.733 C 359.181 364.644 359.004 364.199 358.827 363.4 L 347.118 306.03 C 347.03 305.764 346.941 305.409 346.941 305.143 C 346.941 304.52 347.473 304.166 348.537 303.899 L 356.342 302.389 L 357.318 302.3 C 357.939 302.3 358.294 302.833 358.471 303.899 L 363.794 333.383 C 364.414 336.936 365.035 341.997 365.655 348.57 C 365.655 348.481 365.922 346.882 366.454 343.597 C 366.632 342.263 367.075 339.6 367.784 335.604 L 374.792 304.698 C 374.968 303.899 375.146 303.455 375.324 303.366 C 375.59 303.188 376.034 303.1 376.831 303.1 L 383.928 303.1 C 384.726 303.1 385.169 303.188 385.347 303.366 C 385.524 303.455 385.701 303.899 385.878 304.698 L 391.911 332.673 C 392.709 336.313 393.33 340.399 393.95 344.839 L 394.482 349.014 C 395.103 342.531 395.813 337.024 396.611 332.673 L 401.755 303.899 C 401.934 302.833 402.289 302.3 402.909 302.3 C 402.998 302.3 403.352 302.389 403.883 302.477 L 411.335 304.077 C 412.31 304.343 412.843 304.698 412.843 305.231 Z M 432.179 363.312 C 432.179 364.29 431.647 364.822 430.67 364.822 L 422.333 364.822 C 421.358 364.822 420.914 364.29 420.914 363.312 L 420.914 329.209 L 420.914 322.637 C 420.914 321.661 421.446 321.128 422.512 321.128 L 430.67 320.95 C 431.647 320.95 432.179 321.483 432.179 322.46 L 432.179 363.312 Z M 496.735 321.395 C 496.735 321.395 496.646 321.661 496.469 322.282 L 484.229 363.223 C 483.963 364.023 483.431 364.466 482.544 364.466 L 475.182 364.466 C 474.561 364.466 474.118 364.378 474.029 364.29 C 473.851 364.111 473.674 363.667 473.585 363.046 L 469.417 340.577 C 469.328 340.133 469.15 338.623 468.795 336.047 L 468.44 332.762 L 468.175 330.63 C 467.909 332.673 467.376 335.959 466.578 340.577 L 461.345 363.134 C 461.079 364.023 460.546 364.466 459.749 364.466 L 452.475 364.466 C 451.677 364.466 451.144 364.023 450.878 363.134 L 440.147 322.282 C 440.058 321.837 439.969 321.483 439.969 321.305 C 439.969 320.862 440.412 320.506 441.299 320.417 L 449.105 319.262 C 449.193 319.174 449.371 319.174 449.814 319.174 C 450.346 319.174 450.701 319.618 450.878 320.417 L 455.047 340.844 C 455.49 343.063 456.111 347.77 456.91 354.785 C 457.442 348.659 457.973 344.396 458.507 341.997 L 462.942 321.216 C 463.119 320.327 463.652 319.885 464.537 319.885 L 472.52 319.885 C 473.407 319.885 473.939 320.327 474.118 321.216 L 478.108 341.198 C 478.73 344.306 479.262 348.836 479.883 354.785 C 480.681 347.238 481.302 342.354 481.834 340.044 L 486.357 320.417 C 486.534 319.618 486.889 319.174 487.332 319.174 C 487.776 319.174 488.043 319.174 488.132 319.262 L 495.405 320.417 C 496.291 320.506 496.735 320.862 496.735 321.395 Z" style="fill: rgb(0, 76, 147); text-wrap-mode: nowrap;"/>
|
||||
<ellipse style="fill: rgb(0, 76, 147);" cx="426.691" cy="309.51" rx="5.704" ry="5.711"/>
|
||||
<path d="M 515.046 363.294 C 515.046 364.269 514.514 364.803 513.539 364.803 L 505.201 364.803 C 504.226 364.803 503.782 364.269 503.782 363.294 L 503.782 329.191 L 503.782 322.619 C 503.782 321.642 504.314 321.109 505.378 321.109 L 513.539 320.932 C 514.514 320.932 515.046 321.464 515.046 322.442 L 515.046 363.294 Z" style="fill: rgb(0, 76, 147); text-wrap-mode: nowrap;"/>
|
||||
<ellipse style="fill: rgb(0, 76, 147);" cx="509.338" cy="309.501" rx="5.704" ry="5.711"/>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 6.1 KiB |
973
index.html
973
index.html
File diff suppressed because one or more lines are too long
232
index.qmd
232
index.qmd
@@ -36,7 +36,8 @@ revealjs-plugins:
|
||||
# - drop
|
||||
---
|
||||
|
||||
## Outline {.center}
|
||||
# High-Level View {.center visibility="uncounted"}
|
||||
|
||||
|
||||
<!--
|
||||
Render with: quarto preview /home/jonathan/git/PHD-Presentation/25_07_phd_defense/index.qmd --no-browser --port 6074
|
||||
@@ -48,7 +49,7 @@ $$
|
||||
$$
|
||||
:::
|
||||
|
||||
:::: {style="font-size: 150%;"}
|
||||
<!-- :::: {style="font-size: 150%;"}
|
||||
|
||||
<i class="fa fa-fw fa-rocket" style="color:var(--col_grey_9);"></i>   [Research Motivation](#motivation)
|
||||
|
||||
@@ -60,7 +61,8 @@ $$
|
||||
|
||||
<i class="fa fa-fw fa-newspaper" style="color:var(--col_grey_9);"></i>   [Contributions](#sec-contributions)
|
||||
|
||||
:::
|
||||
:::: -->
|
||||
|
||||
|
||||
```{r, setup, include=FALSE}
|
||||
# Compile with: rmarkdown::render("crps_learning.Rmd")
|
||||
@@ -754,7 +756,7 @@ void main(){
|
||||
::::
|
||||
|
||||
|
||||
# CRPS Learning {#sec-crps-learning}
|
||||
# CRPS Learning {#sec-crps-learning visibility="uncounted"}
|
||||
|
||||
Berrisch, J., & Ziel, F. [-@BERRISCH2023105221]. *Journal of Econometrics*, 237(2), 105221.
|
||||
|
||||
@@ -843,7 +845,7 @@ plot(w[, 3],
|
||||
xlab = "",
|
||||
ylab = "", xaxt = "n", yaxt = "n", bty = "n", col = "#FFD44EFF"
|
||||
)
|
||||
text(6, 0.25, TeX("$w_3(t)$"), cex = 2, col = "#FFD44EFF")
|
||||
text(6, 0.25, TeX("$w_2(t)$"), cex = 2, col = "#FFD44EFF")
|
||||
arrows(13, 0.75, 15, 1, , lwd = 4, bty = "n", col = "#414141FF")
|
||||
|
||||
```
|
||||
@@ -941,7 +943,7 @@ chart = {
|
||||
.style('align-self', 'center')
|
||||
.style('margin-left', 'auto')
|
||||
.on('click', () => {
|
||||
selectedMu = 0.5;
|
||||
selectedMu = 1;
|
||||
muSlider.property('value', selectedMu);
|
||||
muDisplay.text(selectedMu.toFixed(1));
|
||||
updateChart(filteredData());
|
||||
@@ -1053,7 +1055,7 @@ chart = {
|
||||
|
||||
## The Framework of Prediction under Expert Advice
|
||||
|
||||
### The sequential framework
|
||||
###
|
||||
|
||||
:::: {.columns}
|
||||
|
||||
@@ -1287,7 +1289,7 @@ $\ell'$ is the subgradient of $\ell$ at forecast combination $\widetilde{X}$.
|
||||
\text{CRPS}(F, y) = \int_{\mathbb{R}} {(F(x) - \mathbb{1}\{ x > y \})}^2 dx \label{eq:crps}
|
||||
\end{equation*}
|
||||
|
||||
It's strictly proper @gneiting2007strictly.
|
||||
It's strictly proper [@gneiting2007strictly].
|
||||
|
||||
Using the CRPS, we can calculate time-adaptive weights $w_{t,k}$. However, what if the experts' performance varies in parts of the distribution?
|
||||
|
||||
@@ -2277,7 +2279,7 @@ weights %>%
|
||||
|
||||
::::
|
||||
|
||||
# Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices
|
||||
# Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices {visibility="uncounted"}
|
||||
|
||||
Berrisch, J., & Ziel, F. (2024). *International Journal of Forecasting*, 40(4), 1568-1586.
|
||||
|
||||
@@ -3014,14 +3016,12 @@ Pubications:
|
||||
|
||||
::::
|
||||
|
||||
# Modeling Volatility and Dependence of European Carbon and Energy Prices {#sec-voldep}
|
||||
# Modeling Volatility and Dependence of European Carbon and Energy Prices {#sec-voldep visibility="uncounted"}
|
||||
|
||||
Berrisch, J., Pappert, S., Ziel, F., & Arsova, A. (2023). *Finance Research Letters*, 52, 103503.
|
||||
|
||||
---
|
||||
|
||||
##
|
||||
|
||||
:::: {.columns}
|
||||
|
||||
::: {.column width="48%"}
|
||||
@@ -3037,7 +3037,7 @@ for several fields:
|
||||
|
||||
<i class="fa fa-fw fa-handshake" style="color:var(--col_grey_9);"></i> Political decisions
|
||||
|
||||
EUA prices are obviously connected to the energy market
|
||||
EUA prices are connected to energy markets
|
||||
|
||||
How can the dynamics be characterized?
|
||||
|
||||
@@ -3057,23 +3057,20 @@ Several Questions arise:
|
||||
|
||||
### Data
|
||||
|
||||
EUA, natural gas, Brent crude oil, coal
|
||||
Daily Observations: 03/15/2010 - 10/14/2022
|
||||
|
||||
March 15, 2010, until October 14, 2022
|
||||
EUA, Natural Gas, Brent Crude Oil, Coal
|
||||
|
||||
Data was normalized w.r.t. $\text{CO}_2$ emissions
|
||||
- normalized w.r.t. $\text{CO}_2$ emissions
|
||||
- Adjusted for inflation by Eurostat's HICP, *excluding energy*
|
||||
|
||||
Emission-adjusted prices reflects one tonne of $\text{CO}_2$
|
||||
|
||||
We adjusted for inflation by Eurostat's HICP, excluding energy
|
||||
Emission-adjusted prices reflect one tonne of $\text{CO}_2$
|
||||
|
||||
Log transformation of the data to stabilize the variance
|
||||
|
||||
ADF Test: All series are stationary in first differences
|
||||
|
||||
Johansen’s likelihood ratio trace test suggests two cointegrating relationships (levels)
|
||||
|
||||
Johansen’s likelihood ratio trace test suggests no cointegrating relationships (logs)
|
||||
Johansen’s likelihood ratio trace test suggests two cointegrating relationships (only in levels)
|
||||
|
||||
:::
|
||||
|
||||
@@ -3137,26 +3134,6 @@ readr::read_csv("assets/voldep/2022_10_14_eur_ref_co2_adj_hvpi_ex_nrg.csv") %>%
|
||||
scale_y_continuous(trans = "log2")
|
||||
```
|
||||
|
||||
## Modeling Approach: Overview
|
||||
|
||||
</br>
|
||||
|
||||
### VECM: Vector Error Correction Model
|
||||
|
||||
- Modeling the expectaion
|
||||
- Captures the long-run cointegrating relationship
|
||||
- Different cointegrating ranks, including rank zero (no cointegration)
|
||||
|
||||
### GARCH: Generalized Autoregressive Conditional Heteroscedasticity
|
||||
|
||||
- Captures dynamics in conditional variance
|
||||
|
||||
### Copula: Captures the dependence structure
|
||||
|
||||
- Captures: conditional cross-sectional dependencies
|
||||
- Dependence allowed to vary over time
|
||||
|
||||
|
||||
## Modeling Approach: Notation
|
||||
|
||||
<br/>
|
||||
@@ -3172,8 +3149,9 @@ readr::read_csv("assets/voldep/2022_10_14_eur_ref_co2_adj_hvpi_ex_nrg.csv") %>%
|
||||
- $\mathcal{F}_{t}$ is the sigma field generated by all information available up to and including time $t$
|
||||
|
||||
Sklars theorem: decompose target into
|
||||
- marginal distributions: $F_{X_{k,t}|\mathcal{F}_{t-1}}$ for $k=1,\ldots, K$, and
|
||||
- copula function: $C_{\boldsymbol{U}_{t}|\mathcal{F}_{t - 1}}$
|
||||
|
||||
- marginal distributions: $F_{X_{k,t}|\mathcal{F}_{t-1}}$ for $k=1,\ldots, K$, and
|
||||
- copula function: $C_{\boldsymbol{U}_{t}|\mathcal{F}_{t - 1}}$
|
||||
|
||||
:::
|
||||
|
||||
@@ -3210,7 +3188,7 @@ We take $C$ as the $t$-copula
|
||||
|
||||
::::
|
||||
|
||||
## Modeling Approach: Mean and Variance
|
||||
## Modeling Approach: The General Framework
|
||||
|
||||
<br/>
|
||||
|
||||
@@ -3222,23 +3200,14 @@ We take $C$ as the $t$-copula
|
||||
|
||||
$$\mathbf{F} = (F_1, \ldots, F_K)^{\intercal}$$
|
||||
|
||||
### Generalized non-central t-distributions
|
||||
- To account for heavy tails
|
||||
- Time varying
|
||||
- expectation: $\boldsymbol{\mu}_t = (\mu_{1,t}, \ldots, \mu_{K,t})^{\intercal}$
|
||||
Generalized non-central t-distributions
|
||||
|
||||
- Time varying: expectation $\boldsymbol{\mu}_t = (\mu_{1,t}, \ldots, \mu_{K,t})^{\intercal}$
|
||||
- variance: $\boldsymbol{\sigma}_{t}^2 = (\sigma_{1,t}^2, \ldots, \sigma_{K,t}^2)^{\intercal}$
|
||||
- Time invariant
|
||||
- Time invariant
|
||||
- degrees of freedom: $\boldsymbol{\nu} = (\nu_1, \ldots, \nu_K)^{\intercal}$
|
||||
- noncentrality: $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_K)^{\intercal}$
|
||||
|
||||
:::
|
||||
|
||||
::: {.column width="4%"}
|
||||
|
||||
:::
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
### VECM Model
|
||||
|
||||
\begin{align}
|
||||
@@ -3247,6 +3216,14 @@ $$\mathbf{F} = (F_1, \ldots, F_K)^{\intercal}$$
|
||||
|
||||
where $\Pi = \alpha \beta^{\intercal}$ is the cointegrating matrix of rank $r$, $0 \leq r\leq K$.
|
||||
|
||||
:::
|
||||
|
||||
::: {.column width="4%"}
|
||||
|
||||
:::
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
### GARCH model
|
||||
|
||||
\begin{align}
|
||||
@@ -3255,19 +3232,7 @@ where $\Pi = \alpha \beta^{\intercal}$ is the cointegrating matrix of rank $r$,
|
||||
|
||||
where $\epsilon_{i,t-1}^+ = \max\{\epsilon_{i,t-1}, 0\}$ ...
|
||||
|
||||
Separate coefficients for positive and negative innovations to capture leverage effects.
|
||||
|
||||
:::
|
||||
|
||||
::::
|
||||
|
||||
## Modeling Approach: Dependence
|
||||
|
||||
<br/>
|
||||
|
||||
:::: {.columns}
|
||||
|
||||
::: {.column width="48%"}
|
||||
Positive vs. negative innovations (capture leverage effects).
|
||||
|
||||
### Time-varying dependence parameters
|
||||
|
||||
@@ -3277,39 +3242,15 @@ Separate coefficients for positive and negative innovations to capture leverage
|
||||
\xi_{ij,t} = & \eta_{0,ij} + \eta_{1,ij} \xi_{ij,t-1} + \eta_{2,ij} z_{i,t-1} z_{j,t-1},
|
||||
\end{align*}
|
||||
|
||||
$\xi_{ij,t}$ is a latent process
|
||||
$z_{i,t}$ is the $i$-th standardized residual from time series $i$
|
||||
|
||||
$\Lambda(\cdot)$ is a link function:
|
||||
|
||||
$z_{i,t}$ denotes the $i$-th standardized residual from time series $i$ at time point $t$
|
||||
|
||||
|
||||
$\Lambda(\cdot)$ is a link function
|
||||
- ensures that $\Xi_{t}$ is a valid variance covariance matrix
|
||||
- ensures that $\Xi_{t}$ does not exceed its support space and remains semi-positive definite
|
||||
|
||||
:::
|
||||
|
||||
::: {.column width="4%"}
|
||||
|
||||
:::
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
### Maximum Likelihood Estimation
|
||||
|
||||
All parameters can be estimated jointly. Using conditional independence:
|
||||
\begin{align*}
|
||||
L = f_{X_1} \prod_{i=2}^T f_{X_i|\mathcal{F}_{i-1}},
|
||||
\end{align*}
|
||||
with multivariate conditional density:
|
||||
\begin{align*}
|
||||
f_{\mathbf{X}_t}(\mathbf{x}_t | \mathcal{F}_{t-1}) = c\left[\mathbf{F}(\mathbf{x}_t;\boldsymbol{\mu}_t, \boldsymbol{\sigma}_{t}^2, \boldsymbol{\nu},
|
||||
\boldsymbol{\lambda});\Xi_t, \Theta\right] \cdot \\ \prod_{i=1}^K f_{X_{i,t}}(\mathbf{x}_t;\boldsymbol{\mu}_t, \boldsymbol{\sigma}_{t}^2, \boldsymbol{\nu}, \boldsymbol{\lambda})
|
||||
\end{align*}
|
||||
The copula density $c$ can be derived analytically.
|
||||
|
||||
:::
|
||||
|
||||
::::
|
||||
|
||||
## Study Design and Evaluation
|
||||
@@ -3324,13 +3265,19 @@ The copula density $c$ can be derived analytically.
|
||||
|
||||
- 3257 observations total
|
||||
- Window size: 1000 days (~ four years)
|
||||
- Forecasting 30-steps-ahead
|
||||
- We sample 250 of 2227 starting points
|
||||
- We draw $2^{12}= 2048$ trajectories 30 steps ahead
|
||||
|
||||
=> 2227 potential starting points
|
||||
### Estimation
|
||||
|
||||
We sample 250 to reduce computational cost
|
||||
Joint maximum lieklihood estimation:
|
||||
|
||||
We draw $2^{12}= 2048$ trajectories from the joint predictive distribution
|
||||
\begin{align*}
|
||||
f_{\mathbf{X}_t}(\mathbf{x}_t | \mathcal{F}_{t-1}) = c\left[\mathbf{F}(\mathbf{x}_t;\boldsymbol{\mu}_t, \boldsymbol{\sigma}_{t}^2, \boldsymbol{\nu},
|
||||
\boldsymbol{\lambda});\Xi_t, \Theta\right] \cdot \\ \prod_{i=1}^K f_{X_{i,t}}(\mathbf{x}_t;\boldsymbol{\mu}_t, \boldsymbol{\sigma}_{t}^2, \boldsymbol{\nu}, \boldsymbol{\lambda})
|
||||
\end{align*}
|
||||
|
||||
The copula density $c$ can be derived analytically.
|
||||
|
||||
:::
|
||||
|
||||
@@ -3342,7 +3289,7 @@ We draw $2^{12}= 2048$ trajectories from the joint predictive distribution
|
||||
|
||||
### Evaluation
|
||||
|
||||
Forecasts are evaluated by the energy score (ES)
|
||||
Our main objective is the Energy Score (ES)
|
||||
|
||||
\begin{align*}
|
||||
\text{ES}_t(F, \mathbf{x}_t) = \mathbb{E}_{F} \left(||\tilde{\mathbf{X}}_t - \mathbf{x}_t||_2\right) - \\ \frac{1}{2} \mathbb{E}_F \left(||\tilde{\mathbf{X}}_t - \tilde{\mathbf{X}}_t'||_2 \right)
|
||||
@@ -3368,7 +3315,7 @@ For univariate cases the Energy Score becomes the Continuous Ranked Probability
|
||||
|
||||
Relative improvement in ES compared to $\text{RW}^{\sigma, \rho}$
|
||||
|
||||
Cellcolor: w.r.t. test statistic of Diebold-Mariano test (testing wether the model outperformes the benchmark, greener = better).
|
||||
Cellcolor: w.r.t. test statistic of Diebold-Mariano test (wether the model outperformes the benchmark, greener = better).
|
||||
|
||||
```{r, echo=FALSE, results='asis', width = 'revert-layer', cache = TRUE}
|
||||
load("assets/voldep/energy_df.Rdata")
|
||||
@@ -3424,6 +3371,23 @@ table_energy %>%
|
||||
)
|
||||
```
|
||||
|
||||
```{=html}
|
||||
<div style="font-size: 0.5em; margin-top: 0.5em;">
|
||||
<span style="padding: 2px 6px;">Coloring w.r.t. test statistic: </span>
|
||||
<span style="background-color: #66BA6A; padding: 2px 6px;"><-5</span>
|
||||
<span style="background-color: #7CC168; padding: 2px 6px;">-4</span>
|
||||
<span style="background-color: #91C866; padding: 2px 6px;">-3</span>
|
||||
<span style="background-color: #B0D363; padding: 2px 6px;">-2</span>
|
||||
<span style="background-color: #D8E05E; padding: 2px 6px;">-1</span>
|
||||
<span style="background-color: #FFED58; padding: 2px 6px;">0</span>
|
||||
<span style="background-color: #FFD145; padding: 2px 6px;">1</span>
|
||||
<span style="background-color: #FFB531; padding: 2px 6px;">2</span>
|
||||
<span style="background-color: #FC9733; padding: 2px 6px;">3</span>
|
||||
<span style="background-color: #F67744; padding: 2px 6px;">4</span>
|
||||
<span style="background-color: #EE5250; padding: 2px 6px;">>5</span>
|
||||
</div>
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
::: {.column width="4%"}
|
||||
@@ -3438,7 +3402,7 @@ table_energy %>%
|
||||
- Vector ETS $VES^{\sigma}$ with constant volatility
|
||||
|
||||
- Heteroscedasticity is a main driver of ES
|
||||
- The VECM model without cointegration (essentially a VAR) is the best performing model in terms of ES overall
|
||||
- The VECM model without cointegration (VAR) is the best performing model in terms of ES overall
|
||||
- For EUA, the ETS Benchmark is the best performing model in terms of ES
|
||||
|
||||
:::
|
||||
@@ -3467,7 +3431,7 @@ table_energy %>%
|
||||
|
||||
::: {.column width="68%"}
|
||||
|
||||
Improvement in CRPS of selected models relative to $\textrm{RW}^{\sigma, \rho}_{}$ in % (higher = better). Colored according to the test statistic of a DM-Test comparing to $\textrm{RW}^{\sigma, \rho}_{}$ (greener means lower test statistic i.e., better performance compared to $\textrm{RW}^{\sigma, \rho}_{}$).
|
||||
Relative improvement in CRPS compared to $\text{RW}^{\sigma, \rho}$
|
||||
|
||||
```{r, echo=FALSE, results = 'asis', cache = TRUE}
|
||||
load("assets/voldep/crps_df.Rdata")
|
||||
@@ -3515,6 +3479,23 @@ table_crps %>%
|
||||
)
|
||||
```
|
||||
|
||||
```{=html}
|
||||
<div style="font-size: 0.5em; margin-top: 0.5em;">
|
||||
<span style="padding: 2px 6px;">Coloring w.r.t. test statistic: </span>
|
||||
<span style="background-color: #66BA6A; padding: 2px 6px;"><-5</span>
|
||||
<span style="background-color: #7CC168; padding: 2px 6px;">-4</span>
|
||||
<span style="background-color: #91C866; padding: 2px 6px;">-3</span>
|
||||
<span style="background-color: #B0D363; padding: 2px 6px;">-2</span>
|
||||
<span style="background-color: #D8E05E; padding: 2px 6px;">-1</span>
|
||||
<span style="background-color: #FFED58; padding: 2px 6px;">0</span>
|
||||
<span style="background-color: #FFD145; padding: 2px 6px;">1</span>
|
||||
<span style="background-color: #FFB531; padding: 2px 6px;">2</span>
|
||||
<span style="background-color: #FC9733; padding: 2px 6px;">3</span>
|
||||
<span style="background-color: #F67744; padding: 2px 6px;">4</span>
|
||||
<span style="background-color: #EE5250; padding: 2px 6px;">>5</span>
|
||||
</div>
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
::::
|
||||
@@ -3527,16 +3508,9 @@ table_crps %>%
|
||||
|
||||
RMSE measures the performance of the forecasts at their mean
|
||||
|
||||
Some models beat the benchmarks at short horizons
|
||||
|
||||
</br>
|
||||
|
||||
|
||||
- Some models beat the benchmarks at short horizons
|
||||
|
||||
</br>
|
||||
|
||||
Conclusion: the Improvements seen before must be attributed to other parts of the multivariate probabilistic predictive distribution
|
||||
|
||||
Conclusion: the Improvements seen before must be attributed to other parts of the multivariate predictive distribution
|
||||
|
||||
:::
|
||||
|
||||
@@ -3546,7 +3520,7 @@ Conclusion: the Improvements seen before must be attributed to other parts of th
|
||||
|
||||
::: {.column width="68%"}
|
||||
|
||||
Improvement in RMSE score of selected models relative to $\textrm{RW}^{\sigma, \rho}_{}$ in % (higher = better). Colored according to the test statistic of a DM-Test comparing to $\textrm{RW}^{\sigma, \rho}_{}$ (greener means lower test statistic i.e., better performance compared to $\textrm{RW}^{\sigma, \rho}_{}$).
|
||||
Relative improvement in RMSE compared to $\text{RW}^{\sigma, \rho}$
|
||||
|
||||
```{r, echo=FALSE, results = 'asis', cache = TRUE}
|
||||
load("assets/voldep/rmsq_df.Rdata")
|
||||
@@ -3593,6 +3567,23 @@ table_rmsq %>%
|
||||
)
|
||||
```
|
||||
|
||||
```{=html}
|
||||
<div style="font-size: 0.5em; margin-top: 0.5em;">
|
||||
<span style="padding: 2px 6px;">Coloring w.r.t. test statistic: </span>
|
||||
<span style="background-color: #66BA6A; padding: 2px 6px;"><-5</span>
|
||||
<span style="background-color: #7CC168; padding: 2px 6px;">-4</span>
|
||||
<span style="background-color: #91C866; padding: 2px 6px;">-3</span>
|
||||
<span style="background-color: #B0D363; padding: 2px 6px;">-2</span>
|
||||
<span style="background-color: #D8E05E; padding: 2px 6px;">-1</span>
|
||||
<span style="background-color: #FFED58; padding: 2px 6px;">0</span>
|
||||
<span style="background-color: #FFD145; padding: 2px 6px;">1</span>
|
||||
<span style="background-color: #FFB531; padding: 2px 6px;">2</span>
|
||||
<span style="background-color: #FC9733; padding: 2px 6px;">3</span>
|
||||
<span style="background-color: #F67744; padding: 2px 6px;">4</span>
|
||||
<span style="background-color: #EE5250; padding: 2px 6px;">>5</span>
|
||||
</div>
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
::::
|
||||
@@ -3757,7 +3748,7 @@ Accounting for heteroscedasticity or stabilizing the variance via log transforma
|
||||
- Price dynamics emerged way before the russian invaion into ukraine
|
||||
- Linear dependence between the series reacted only right after the invasion
|
||||
- Improvements in forecasting performance is mainly attributed to:
|
||||
- the tails multivariate probabilistic predictive distribution
|
||||
- the tails
|
||||
- the dependence structure between the marginals
|
||||
|
||||
:::
|
||||
@@ -3778,7 +3769,7 @@ Accounting for heteroscedasticity or stabilizing the variance via log transforma
|
||||
|
||||
::::
|
||||
|
||||
---
|
||||
# Final Remarks {visibility="uncounted"}
|
||||
|
||||
## Contributions {#sec-contributions}
|
||||
|
||||
@@ -3786,8 +3777,6 @@ Accounting for heteroscedasticity or stabilizing the variance via log transforma
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
<p style="margin:1.5em;"></p>
|
||||
|
||||
**Theoretical**
|
||||
|
||||
Probabilistic Online Learning:
|
||||
@@ -3821,8 +3810,6 @@ Applications
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
<p style="margin:1.5em;"></p>
|
||||
|
||||
**Software**
|
||||
|
||||
R Packages:
|
||||
@@ -3852,5 +3839,8 @@ Berrisch, J., Narajewski, M., & Ziel, F. [-@BERRISCH2023100236]:
|
||||
|
||||
::::
|
||||
|
||||
## Questions! {visibility="uncounted"}
|
||||
|
||||
](assets/allisonhorst/hiding.png)
|
||||
|
||||
## References {visibility="uncounted"}
|
||||
Reference in New Issue
Block a user