A thousand minor improvements

This commit is contained in:
2025-06-20 11:30:44 +02:00
parent 2b22506fb8
commit 9bc402b926
6 changed files with 2309 additions and 880 deletions

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 64 KiB

After

Width:  |  Height:  |  Size: 84 KiB

1382
assets/hecf_logo_reduced.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 64 KiB

13
assets/wiwi_logo.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 80 KiB

14
assets/wiwi_signet.svg Normal file
View File

@@ -0,0 +1,14 @@
<?xml version="1.0" encoding="utf-8"?>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="326.464 209.764 188.9641 175.744" width="188.964px" height="175.744px">
<defs>
<style>.default{fill:#004c93;}</style>
</defs>
<path class="default" d="M500.566,376.836H335.134V218.44h158.4v31.05a2.05,2.05,0,0,0,1.33,1.919l6.527,2.447a.611.611,0,0,0,.215.041.6.6,0,0,0,.6-.6V214.1a4.336,4.336,0,0,0-4.336-4.336H330.8a4.336,4.336,0,0,0-4.336,4.336V381.172a4.337,4.337,0,0,0,4.336,4.336H500.566a1.639,1.639,0,0,0,1.639-1.639v-5.4A1.638,1.638,0,0,0,500.566,376.836Z" transform="matrix(1, 0, 0, 1, 3.552713678800501e-15, 0)"/>
<g transform="matrix(0.571585, 0, 0, -0.572302, 342.738, 530.144)" style="">
<path d="M 0.548 -0.232 Q 0.548 -0.166 0.536 -0.127 Q 0.524 -0.088 0.493 -0.056 Q 0.423 0.017 0.295 0.017 Q 0.156 0.017 0.1 -0.07 Q 0.066 -0.123 0.066 -0.232 L 0.066 -0.665 Q 0.066 -0.679 0.069 -0.683 Q 0.073 -0.686 0.087 -0.686 L 0.182 -0.686 Q 0.2 -0.686 0.202 -0.677 Q 0.203 -0.673 0.203 -0.665 L 0.203 -0.232 Q 0.203 -0.152 0.223 -0.126 Q 0.25 -0.091 0.305 -0.091 Q 0.364 -0.091 0.39 -0.123 Q 0.416 -0.156 0.416 -0.23 L 0.416 -0.665 Q 0.416 -0.683 0.425 -0.685 Q 0.429 -0.686 0.437 -0.686 L 0.527 -0.686 Q 0.541 -0.686 0.544 -0.683 Q 0.548 -0.679 0.548 -0.665 Z M 1.227 -0.342 Q 1.227 -0.089 1.1 -0.025 Q 1.051 0 0.937 0 L 0.78 0 Q 0.762 0 0.76 -0.009 Q 0.759 -0.013 0.759 -0.021 L 0.759 -0.665 Q 0.759 -0.683 0.768 -0.685 Q 0.772 -0.686 0.78 -0.686 L 0.937 -0.686 Q 1.009 -0.686 1.041 -0.68 Q 1.227 -0.645 1.227 -0.342 Z M 1.083 -0.336 Q 1.083 -0.514 1.02 -0.557 Q 0.991 -0.577 0.931 -0.577 L 0.896 -0.577 L 0.896 -0.109 L 0.931 -0.109 Q 1.006 -0.109 1.035 -0.135 Q 1.083 -0.178 1.083 -0.336 Z M 1.789 -0.675 Q 1.789 -0.672 1.787 -0.662 L 1.767 -0.594 Q 1.762 -0.577 1.745 -0.577 L 1.551 -0.577 L 1.551 -0.413 L 1.718 -0.413 Q 1.736 -0.413 1.738 -0.404 Q 1.739 -0.4 1.739 -0.392 L 1.739 -0.325 Q 1.739 -0.307 1.73 -0.305 Q 1.726 -0.304 1.718 -0.304 L 1.551 -0.304 L 1.551 -0.109 L 1.761 -0.109 Q 1.779 -0.109 1.781 -0.1 Q 1.782 -0.096 1.782 -0.088 L 1.782 -0.021 Q 1.782 -0.007 1.779 -0.003 Q 1.775 0 1.761 0 L 1.435 0 Q 1.421 0 1.418 -0.003 Q 1.414 -0.007 1.414 -0.021 L 1.414 -0.665 Q 1.414 -0.679 1.418 -0.683 Q 1.421 -0.686 1.435 -0.686 L 1.769 -0.686 Q 1.789 -0.686 1.789 -0.675 Z" transform="matrix(135, 0, 0, -135, 0, 427)" style="fill: rgb(0, 76, 147); text-wrap-mode: nowrap;"/>
</g>
<path d="M 412.843 305.231 C 412.843 305.586 412.754 305.942 412.665 306.297 L 399.716 363.4 C 399.45 364.466 398.828 364.999 397.764 364.999 L 389.87 364.999 C 389.161 364.999 388.717 364.91 388.451 364.733 C 388.185 364.556 388.007 364.111 387.919 363.4 L 382.154 333.117 C 381 327.344 380.29 322.371 380.024 318.108 C 379.759 321.038 379.316 323.704 378.872 326.279 C 378.694 327.167 378.428 328.499 378.162 330.186 C 377.896 330.63 377.719 331.696 377.541 333.205 L 370.711 363.4 C 370.535 364.199 370.357 364.644 370.179 364.733 C 370.002 364.91 369.557 364.999 368.76 364.999 L 360.777 364.999 C 359.98 364.999 359.536 364.91 359.358 364.733 C 359.181 364.644 359.004 364.199 358.827 363.4 L 347.118 306.03 C 347.03 305.764 346.941 305.409 346.941 305.143 C 346.941 304.52 347.473 304.166 348.537 303.899 L 356.342 302.389 L 357.318 302.3 C 357.939 302.3 358.294 302.833 358.471 303.899 L 363.794 333.383 C 364.414 336.936 365.035 341.997 365.655 348.57 C 365.655 348.481 365.922 346.882 366.454 343.597 C 366.632 342.263 367.075 339.6 367.784 335.604 L 374.792 304.698 C 374.968 303.899 375.146 303.455 375.324 303.366 C 375.59 303.188 376.034 303.1 376.831 303.1 L 383.928 303.1 C 384.726 303.1 385.169 303.188 385.347 303.366 C 385.524 303.455 385.701 303.899 385.878 304.698 L 391.911 332.673 C 392.709 336.313 393.33 340.399 393.95 344.839 L 394.482 349.014 C 395.103 342.531 395.813 337.024 396.611 332.673 L 401.755 303.899 C 401.934 302.833 402.289 302.3 402.909 302.3 C 402.998 302.3 403.352 302.389 403.883 302.477 L 411.335 304.077 C 412.31 304.343 412.843 304.698 412.843 305.231 Z M 432.179 363.312 C 432.179 364.29 431.647 364.822 430.67 364.822 L 422.333 364.822 C 421.358 364.822 420.914 364.29 420.914 363.312 L 420.914 329.209 L 420.914 322.637 C 420.914 321.661 421.446 321.128 422.512 321.128 L 430.67 320.95 C 431.647 320.95 432.179 321.483 432.179 322.46 L 432.179 363.312 Z M 496.735 321.395 C 496.735 321.395 496.646 321.661 496.469 322.282 L 484.229 363.223 C 483.963 364.023 483.431 364.466 482.544 364.466 L 475.182 364.466 C 474.561 364.466 474.118 364.378 474.029 364.29 C 473.851 364.111 473.674 363.667 473.585 363.046 L 469.417 340.577 C 469.328 340.133 469.15 338.623 468.795 336.047 L 468.44 332.762 L 468.175 330.63 C 467.909 332.673 467.376 335.959 466.578 340.577 L 461.345 363.134 C 461.079 364.023 460.546 364.466 459.749 364.466 L 452.475 364.466 C 451.677 364.466 451.144 364.023 450.878 363.134 L 440.147 322.282 C 440.058 321.837 439.969 321.483 439.969 321.305 C 439.969 320.862 440.412 320.506 441.299 320.417 L 449.105 319.262 C 449.193 319.174 449.371 319.174 449.814 319.174 C 450.346 319.174 450.701 319.618 450.878 320.417 L 455.047 340.844 C 455.49 343.063 456.111 347.77 456.91 354.785 C 457.442 348.659 457.973 344.396 458.507 341.997 L 462.942 321.216 C 463.119 320.327 463.652 319.885 464.537 319.885 L 472.52 319.885 C 473.407 319.885 473.939 320.327 474.118 321.216 L 478.108 341.198 C 478.73 344.306 479.262 348.836 479.883 354.785 C 480.681 347.238 481.302 342.354 481.834 340.044 L 486.357 320.417 C 486.534 319.618 486.889 319.174 487.332 319.174 C 487.776 319.174 488.043 319.174 488.132 319.262 L 495.405 320.417 C 496.291 320.506 496.735 320.862 496.735 321.395 Z" style="fill: rgb(0, 76, 147); text-wrap-mode: nowrap;"/>
<ellipse style="fill: rgb(0, 76, 147);" cx="426.691" cy="309.51" rx="5.704" ry="5.711"/>
<path d="M 515.046 363.294 C 515.046 364.269 514.514 364.803 513.539 364.803 L 505.201 364.803 C 504.226 364.803 503.782 364.269 503.782 363.294 L 503.782 329.191 L 503.782 322.619 C 503.782 321.642 504.314 321.109 505.378 321.109 L 513.539 320.932 C 514.514 320.932 515.046 321.464 515.046 322.442 L 515.046 363.294 Z" style="fill: rgb(0, 76, 147); text-wrap-mode: nowrap;"/>
<ellipse style="fill: rgb(0, 76, 147);" cx="509.338" cy="309.501" rx="5.704" ry="5.711"/>
</svg>

After

Width:  |  Height:  |  Size: 6.1 KiB

File diff suppressed because one or more lines are too long

240
index.qmd
View File

@@ -36,7 +36,8 @@ revealjs-plugins:
# - drop
---
## Outline {.center}
# High-Level View {.center visibility="uncounted"}
<!--
Render with: quarto preview /home/jonathan/git/PHD-Presentation/25_07_phd_defense/index.qmd --no-browser --port 6074
@@ -48,7 +49,7 @@ $$
$$
:::
:::: {style="font-size: 150%;"}
<!-- :::: {style="font-size: 150%;"}
<i class="fa fa-fw fa-rocket" style="color:var(--col_grey_9);"></i> &ensp; [Research Motivation](#motivation)
@@ -60,7 +61,8 @@ $$
<i class="fa fa-fw fa-newspaper" style="color:var(--col_grey_9);"></i> &ensp; [Contributions](#sec-contributions)
:::
:::: -->
```{r, setup, include=FALSE}
# Compile with: rmarkdown::render("crps_learning.Rmd")
@@ -754,7 +756,7 @@ void main(){
::::
# CRPS Learning {#sec-crps-learning}
# CRPS Learning {#sec-crps-learning visibility="uncounted"}
Berrisch, J., & Ziel, F. [-@BERRISCH2023105221]. *Journal of Econometrics*, 237(2), 105221.
@@ -843,7 +845,7 @@ plot(w[, 3],
xlab = "",
ylab = "", xaxt = "n", yaxt = "n", bty = "n", col = "#FFD44EFF"
)
text(6, 0.25, TeX("$w_3(t)$"), cex = 2, col = "#FFD44EFF")
text(6, 0.25, TeX("$w_2(t)$"), cex = 2, col = "#FFD44EFF")
arrows(13, 0.75, 15, 1, , lwd = 4, bty = "n", col = "#414141FF")
```
@@ -941,7 +943,7 @@ chart = {
.style('align-self', 'center')
.style('margin-left', 'auto')
.on('click', () => {
selectedMu = 0.5;
selectedMu = 1;
muSlider.property('value', selectedMu);
muDisplay.text(selectedMu.toFixed(1));
updateChart(filteredData());
@@ -1053,7 +1055,7 @@ chart = {
## The Framework of Prediction under Expert Advice
### The sequential framework
### &nbsp;
:::: {.columns}
@@ -1287,7 +1289,7 @@ $\ell'$ is the subgradient of $\ell$ at forecast combination $\widetilde{X}$.
\text{CRPS}(F, y) = \int_{\mathbb{R}} {(F(x) - \mathbb{1}\{ x > y \})}^2 dx \label{eq:crps}
\end{equation*}
It's strictly proper @gneiting2007strictly.
It's strictly proper [@gneiting2007strictly].
Using the CRPS, we can calculate time-adaptive weights $w_{t,k}$. However, what if the experts' performance varies in parts of the distribution?
@@ -2277,7 +2279,7 @@ weights %>%
::::
# Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices
# Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices {visibility="uncounted"}
Berrisch, J., & Ziel, F. (2024). *International Journal of Forecasting*, 40(4), 1568-1586.
@@ -3014,14 +3016,12 @@ Pubications:
::::
# Modeling Volatility and Dependence of European Carbon and Energy Prices {#sec-voldep}
# Modeling Volatility and Dependence of European Carbon and Energy Prices {#sec-voldep visibility="uncounted"}
Berrisch, J., Pappert, S., Ziel, F., & Arsova, A. (2023). *Finance Research Letters*, 52, 103503.
---
## &nbsp;
:::: {.columns}
::: {.column width="48%"}
@@ -3037,7 +3037,7 @@ for several fields:
<i class="fa fa-fw fa-handshake" style="color:var(--col_grey_9);"></i> Political decisions
EUA prices are obviously connected to the energy market
EUA prices are connected to energy markets
How can the dynamics be characterized?
@@ -3057,23 +3057,20 @@ Several Questions arise:
### Data
EUA, natural gas, Brent crude oil, coal
Daily Observations: 03/15/2010 - 10/14/2022
March 15, 2010, until October 14, 2022
EUA, Natural Gas, Brent Crude Oil, Coal
Data was normalized w.r.t. $\text{CO}_2$ emissions
- normalized w.r.t. $\text{CO}_2$ emissions
- Adjusted for inflation by Eurostat's HICP, *excluding energy*
Emission-adjusted prices reflects one tonne of $\text{CO}_2$
We adjusted for inflation by Eurostat's HICP, excluding energy
Emission-adjusted prices reflect one tonne of $\text{CO}_2$
Log transformation of the data to stabilize the variance
ADF Test: All series are stationary in first differences
Johansens likelihood ratio trace test suggests two cointegrating relationships (levels)
Johansens likelihood ratio trace test suggests no cointegrating relationships (logs)
Johansens likelihood ratio trace test suggests two cointegrating relationships (only in levels)
:::
@@ -3137,26 +3134,6 @@ readr::read_csv("assets/voldep/2022_10_14_eur_ref_co2_adj_hvpi_ex_nrg.csv") %>%
scale_y_continuous(trans = "log2")
```
## Modeling Approach: Overview
</br>
### VECM: Vector Error Correction Model
- Modeling the expectaion
- Captures the long-run cointegrating relationship
- Different cointegrating ranks, including rank zero (no cointegration)
### GARCH: Generalized Autoregressive Conditional Heteroscedasticity
- Captures dynamics in conditional variance
### Copula: Captures the dependence structure
- Captures: conditional cross-sectional dependencies
- Dependence allowed to vary over time
## Modeling Approach: Notation
<br/>
@@ -3171,9 +3148,10 @@ readr::read_csv("assets/voldep/2022_10_14_eur_ref_co2_adj_hvpi_ex_nrg.csv") %>%
- $F_{\boldsymbol{X}_t|\mathcal{F}_{t-1}}$
- $\mathcal{F}_{t}$ is the sigma field generated by all information available up to and including time $t$
Sklars theorem: decompose target into
- marginal distributions: $F_{X_{k,t}|\mathcal{F}_{t-1}}$ for $k=1,\ldots, K$, and
- copula function: $C_{\boldsymbol{U}_{t}|\mathcal{F}_{t - 1}}$
Sklars theorem: decompose target into
- marginal distributions: $F_{X_{k,t}|\mathcal{F}_{t-1}}$ for $k=1,\ldots, K$, and
- copula function: $C_{\boldsymbol{U}_{t}|\mathcal{F}_{t - 1}}$
:::
@@ -3210,7 +3188,7 @@ We take $C$ as the $t$-copula
::::
## Modeling Approach: Mean and Variance
## Modeling Approach: The General Framework
<br/>
@@ -3222,22 +3200,13 @@ We take $C$ as the $t$-copula
$$\mathbf{F} = (F_1, \ldots, F_K)^{\intercal}$$
### Generalized non-central t-distributions
- To account for heavy tails
- Time varying
- expectation: $\boldsymbol{\mu}_t = (\mu_{1,t}, \ldots, \mu_{K,t})^{\intercal}$
- variance: $\boldsymbol{\sigma}_{t}^2 = (\sigma_{1,t}^2, \ldots, \sigma_{K,t}^2)^{\intercal}$
- Time invariant
- degrees of freedom: $\boldsymbol{\nu} = (\nu_1, \ldots, \nu_K)^{\intercal}$
- noncentrality: $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_K)^{\intercal}$
Generalized non-central t-distributions
:::
::: {.column width="4%"}
:::
::: {.column width="48%"}
- Time varying: expectation $\boldsymbol{\mu}_t = (\mu_{1,t}, \ldots, \mu_{K,t})^{\intercal}$
- variance: $\boldsymbol{\sigma}_{t}^2 = (\sigma_{1,t}^2, \ldots, \sigma_{K,t}^2)^{\intercal}$
- Time invariant
- degrees of freedom: $\boldsymbol{\nu} = (\nu_1, \ldots, \nu_K)^{\intercal}$
- noncentrality: $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_K)^{\intercal}$
### VECM Model
@@ -3247,6 +3216,14 @@ $$\mathbf{F} = (F_1, \ldots, F_K)^{\intercal}$$
where $\Pi = \alpha \beta^{\intercal}$ is the cointegrating matrix of rank $r$, $0 \leq r\leq K$.
:::
::: {.column width="4%"}
:::
::: {.column width="48%"}
### GARCH model
\begin{align}
@@ -3255,19 +3232,7 @@ where $\Pi = \alpha \beta^{\intercal}$ is the cointegrating matrix of rank $r$,
where $\epsilon_{i,t-1}^+ = \max\{\epsilon_{i,t-1}, 0\}$ ...
Separate coefficients for positive and negative innovations to capture leverage effects.
:::
::::
## Modeling Approach: Dependence
<br/>
:::: {.columns}
::: {.column width="48%"}
Positive vs. negative innovations (capture leverage effects).
### Time-varying dependence parameters
@@ -3277,39 +3242,15 @@ Separate coefficients for positive and negative innovations to capture leverage
\xi_{ij,t} = & \eta_{0,ij} + \eta_{1,ij} \xi_{ij,t-1} + \eta_{2,ij} z_{i,t-1} z_{j,t-1},
\end{align*}
$\xi_{ij,t}$ is a latent process
$z_{i,t}$ is the $i$-th standardized residual from time series $i$
$\Lambda(\cdot)$ is a link function:
$z_{i,t}$ denotes the $i$-th standardized residual from time series $i$ at time point $t$
$\Lambda(\cdot)$ is a link function
- ensures that $\Xi_{t}$ is a valid variance covariance matrix
- ensures that $\Xi_{t}$ does not exceed its support space and remains semi-positive definite
:::
::: {.column width="4%"}
:::
::: {.column width="48%"}
### Maximum Likelihood Estimation
All parameters can be estimated jointly. Using conditional independence:
\begin{align*}
L = f_{X_1} \prod_{i=2}^T f_{X_i|\mathcal{F}_{i-1}},
\end{align*}
with multivariate conditional density:
\begin{align*}
f_{\mathbf{X}_t}(\mathbf{x}_t | \mathcal{F}_{t-1}) = c\left[\mathbf{F}(\mathbf{x}_t;\boldsymbol{\mu}_t, \boldsymbol{\sigma}_{t}^2, \boldsymbol{\nu},
\boldsymbol{\lambda});\Xi_t, \Theta\right] \cdot \\ \prod_{i=1}^K f_{X_{i,t}}(\mathbf{x}_t;\boldsymbol{\mu}_t, \boldsymbol{\sigma}_{t}^2, \boldsymbol{\nu}, \boldsymbol{\lambda})
\end{align*}
The copula density $c$ can be derived analytically.
:::
::::
## Study Design and Evaluation
@@ -3324,13 +3265,19 @@ The copula density $c$ can be derived analytically.
- 3257 observations total
- Window size: 1000 days (~ four years)
- Forecasting 30-steps-ahead
- We sample 250 of 2227 starting points
- We draw $2^{12}= 2048$ trajectories 30 steps ahead
=> 2227 potential starting points
### Estimation
We sample 250 to reduce computational cost
Joint maximum lieklihood estimation:
We draw $2^{12}= 2048$ trajectories from the joint predictive distribution
\begin{align*}
f_{\mathbf{X}_t}(\mathbf{x}_t | \mathcal{F}_{t-1}) = c\left[\mathbf{F}(\mathbf{x}_t;\boldsymbol{\mu}_t, \boldsymbol{\sigma}_{t}^2, \boldsymbol{\nu},
\boldsymbol{\lambda});\Xi_t, \Theta\right] \cdot \\ \prod_{i=1}^K f_{X_{i,t}}(\mathbf{x}_t;\boldsymbol{\mu}_t, \boldsymbol{\sigma}_{t}^2, \boldsymbol{\nu}, \boldsymbol{\lambda})
\end{align*}
The copula density $c$ can be derived analytically.
:::
@@ -3342,7 +3289,7 @@ We draw $2^{12}= 2048$ trajectories from the joint predictive distribution
### Evaluation
Forecasts are evaluated by the energy score (ES)
Our main objective is the Energy Score (ES)
\begin{align*}
\text{ES}_t(F, \mathbf{x}_t) = \mathbb{E}_{F} \left(||\tilde{\mathbf{X}}_t - \mathbf{x}_t||_2\right) - \\ \frac{1}{2} \mathbb{E}_F \left(||\tilde{\mathbf{X}}_t - \tilde{\mathbf{X}}_t'||_2 \right)
@@ -3368,7 +3315,7 @@ For univariate cases the Energy Score becomes the Continuous Ranked Probability
Relative improvement in ES compared to $\text{RW}^{\sigma, \rho}$
Cellcolor: w.r.t. test statistic of Diebold-Mariano test (testing wether the model outperformes the benchmark, greener = better).
Cellcolor: w.r.t. test statistic of Diebold-Mariano test (wether the model outperformes the benchmark, greener = better).
```{r, echo=FALSE, results='asis', width = 'revert-layer', cache = TRUE}
load("assets/voldep/energy_df.Rdata")
@@ -3424,6 +3371,23 @@ table_energy %>%
)
```
```{=html}
<div style="font-size: 0.5em; margin-top: 0.5em;">
<span style="padding: 2px 6px;">Coloring w.r.t. test statistic: </span>
<span style="background-color: #66BA6A; padding: 2px 6px;">&lt;-5</span>
<span style="background-color: #7CC168; padding: 2px 6px;">-4</span>
<span style="background-color: #91C866; padding: 2px 6px;">-3</span>
<span style="background-color: #B0D363; padding: 2px 6px;">-2</span>
<span style="background-color: #D8E05E; padding: 2px 6px;">-1</span>
<span style="background-color: #FFED58; padding: 2px 6px;">0</span>
<span style="background-color: #FFD145; padding: 2px 6px;">1</span>
<span style="background-color: #FFB531; padding: 2px 6px;">2</span>
<span style="background-color: #FC9733; padding: 2px 6px;">3</span>
<span style="background-color: #F67744; padding: 2px 6px;">4</span>
<span style="background-color: #EE5250; padding: 2px 6px;">&gt;5</span>
</div>
```
:::
::: {.column width="4%"}
@@ -3438,7 +3402,7 @@ table_energy %>%
- Vector ETS $VES^{\sigma}$ with constant volatility
- Heteroscedasticity is a main driver of ES
- The VECM model without cointegration (essentially a VAR) is the best performing model in terms of ES overall
- The VECM model without cointegration (VAR) is the best performing model in terms of ES overall
- For EUA, the ETS Benchmark is the best performing model in terms of ES
:::
@@ -3467,7 +3431,7 @@ table_energy %>%
::: {.column width="68%"}
Improvement in CRPS of selected models relative to $\textrm{RW}^{\sigma, \rho}_{}$ in % (higher = better). Colored according to the test statistic of a DM-Test comparing to $\textrm{RW}^{\sigma, \rho}_{}$ (greener means lower test statistic i.e., better performance compared to $\textrm{RW}^{\sigma, \rho}_{}$).
Relative improvement in CRPS compared to $\text{RW}^{\sigma, \rho}$
```{r, echo=FALSE, results = 'asis', cache = TRUE}
load("assets/voldep/crps_df.Rdata")
@@ -3515,6 +3479,23 @@ table_crps %>%
)
```
```{=html}
<div style="font-size: 0.5em; margin-top: 0.5em;">
<span style="padding: 2px 6px;">Coloring w.r.t. test statistic: </span>
<span style="background-color: #66BA6A; padding: 2px 6px;">&lt;-5</span>
<span style="background-color: #7CC168; padding: 2px 6px;">-4</span>
<span style="background-color: #91C866; padding: 2px 6px;">-3</span>
<span style="background-color: #B0D363; padding: 2px 6px;">-2</span>
<span style="background-color: #D8E05E; padding: 2px 6px;">-1</span>
<span style="background-color: #FFED58; padding: 2px 6px;">0</span>
<span style="background-color: #FFD145; padding: 2px 6px;">1</span>
<span style="background-color: #FFB531; padding: 2px 6px;">2</span>
<span style="background-color: #FC9733; padding: 2px 6px;">3</span>
<span style="background-color: #F67744; padding: 2px 6px;">4</span>
<span style="background-color: #EE5250; padding: 2px 6px;">&gt;5</span>
</div>
```
:::
::::
@@ -3527,16 +3508,9 @@ table_crps %>%
RMSE measures the performance of the forecasts at their mean
Some models beat the benchmarks at short horizons
</br>
- Some models beat the benchmarks at short horizons
</br>
Conclusion: the Improvements seen before must be attributed to other parts of the multivariate probabilistic predictive distribution
Conclusion: the Improvements seen before must be attributed to other parts of the multivariate predictive distribution
:::
@@ -3546,7 +3520,7 @@ Conclusion: the Improvements seen before must be attributed to other parts of th
::: {.column width="68%"}
Improvement in RMSE score of selected models relative to $\textrm{RW}^{\sigma, \rho}_{}$ in % (higher = better). Colored according to the test statistic of a DM-Test comparing to $\textrm{RW}^{\sigma, \rho}_{}$ (greener means lower test statistic i.e., better performance compared to $\textrm{RW}^{\sigma, \rho}_{}$).
Relative improvement in RMSE compared to $\text{RW}^{\sigma, \rho}$
```{r, echo=FALSE, results = 'asis', cache = TRUE}
load("assets/voldep/rmsq_df.Rdata")
@@ -3593,6 +3567,23 @@ table_rmsq %>%
)
```
```{=html}
<div style="font-size: 0.5em; margin-top: 0.5em;">
<span style="padding: 2px 6px;">Coloring w.r.t. test statistic: </span>
<span style="background-color: #66BA6A; padding: 2px 6px;">&lt;-5</span>
<span style="background-color: #7CC168; padding: 2px 6px;">-4</span>
<span style="background-color: #91C866; padding: 2px 6px;">-3</span>
<span style="background-color: #B0D363; padding: 2px 6px;">-2</span>
<span style="background-color: #D8E05E; padding: 2px 6px;">-1</span>
<span style="background-color: #FFED58; padding: 2px 6px;">0</span>
<span style="background-color: #FFD145; padding: 2px 6px;">1</span>
<span style="background-color: #FFB531; padding: 2px 6px;">2</span>
<span style="background-color: #FC9733; padding: 2px 6px;">3</span>
<span style="background-color: #F67744; padding: 2px 6px;">4</span>
<span style="background-color: #EE5250; padding: 2px 6px;">&gt;5</span>
</div>
```
:::
::::
@@ -3757,8 +3748,8 @@ Accounting for heteroscedasticity or stabilizing the variance via log transforma
- Price dynamics emerged way before the russian invaion into ukraine
- Linear dependence between the series reacted only right after the invasion
- Improvements in forecasting performance is mainly attributed to:
- the tails multivariate probabilistic predictive distribution
- the dependence structure between the marginals
- the tails
- the dependence structure between the marginals
:::
@@ -3778,7 +3769,7 @@ Accounting for heteroscedasticity or stabilizing the variance via log transforma
::::
---
# Final Remarks {visibility="uncounted"}
## Contributions {#sec-contributions}
@@ -3786,8 +3777,6 @@ Accounting for heteroscedasticity or stabilizing the variance via log transforma
::: {.column width="48%"}
<p style="margin:1.5em;"></p>
**Theoretical**
Probabilistic Online Learning:
@@ -3821,8 +3810,6 @@ Applications
::: {.column width="48%"}
<p style="margin:1.5em;"></p>
**Software**
R Packages:
@@ -3852,5 +3839,8 @@ Berrisch, J., Narajewski, M., & Ziel, F. [-@BERRISCH2023100236]:
::::
## Questions! {visibility="uncounted"}
![Artwork by [\@allison_horst](https://allisonhorst.com/)](assets/allisonhorst/hiding.png)
## References {visibility="uncounted"}