Add multivariate crps learning slides
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
text_size <- 16
|
||||
linesize <- 1
|
||||
width <- 12
|
||||
height <- 6
|
||||
|
||||
@@ -29,3 +30,26 @@ lamgrid <- c(-Inf, 2^(-15:25))
|
||||
|
||||
# Gamma grid
|
||||
gammagrid <- sort(1 - sqrt(seq(0, 0.99, .05)))
|
||||
|
||||
material_pals <- c(
|
||||
"red", "pink", "purple", "deep-purple", "indigo",
|
||||
"blue", "light-blue", "cyan", "teal", "green", "light-green", "lime",
|
||||
"yellow", "amber", "orange", "deep-orange", "brown", "grey", "blue-grey"
|
||||
)
|
||||
cols <- purrr::map(material_pals, ~ ggsci::pal_material(.x)(10)) %>%
|
||||
purrr::reduce(cbind)
|
||||
colnames(cols) <- material_pals
|
||||
|
||||
cols %>%
|
||||
as_tibble() %>%
|
||||
mutate(idx = as.factor(1:10)) %>%
|
||||
pivot_longer(-idx, names_to = "var", values_to = "val") %>%
|
||||
mutate(var = factor(var, levels = material_pals[19:1])) %>%
|
||||
ggplot() +
|
||||
xlab(NULL) +
|
||||
ylab(NULL) +
|
||||
geom_tile(aes(x = idx, y = var, fill = val)) +
|
||||
scale_fill_identity() +
|
||||
scale_x_discrete(expand = c(0, 0)) +
|
||||
scale_y_discrete(expand = c(0, 0)) +
|
||||
theme_minimal() -> plot_cols
|
||||
|
||||
@@ -14,6 +14,16 @@
|
||||
booktitle = {Oxford Research Encyclopedia of Economics and Finance},
|
||||
year = {2019}
|
||||
}
|
||||
@article{marcjasz2022distributional,
|
||||
title = {Distributional neural networks for electricity price forecasting},
|
||||
author = {Marcjasz, Grzegorz and Narajewski, Micha{\l} and Weron, Rafa{\l} and Ziel, Florian},
|
||||
journal = {Energy Economics},
|
||||
volume = {125},
|
||||
pages = {106843},
|
||||
year = {2023},
|
||||
doi = {10.1016/j.eneco.2023.106843},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@article{atiya2020does,
|
||||
title = {Why does forecast combination work so well?},
|
||||
author = {Atiya, Amir F},
|
||||
|
||||
Reference in New Issue
Block a user