Add multivariate crps learning slides

This commit is contained in:
2025-05-18 15:43:15 +02:00
parent afef3f1722
commit 9cf52e5d46
4 changed files with 651 additions and 2 deletions

View File

@@ -1,4 +1,5 @@
text_size <- 16
linesize <- 1
width <- 12
height <- 6
@@ -29,3 +30,26 @@ lamgrid <- c(-Inf, 2^(-15:25))
# Gamma grid
gammagrid <- sort(1 - sqrt(seq(0, 0.99, .05)))
material_pals <- c(
"red", "pink", "purple", "deep-purple", "indigo",
"blue", "light-blue", "cyan", "teal", "green", "light-green", "lime",
"yellow", "amber", "orange", "deep-orange", "brown", "grey", "blue-grey"
)
cols <- purrr::map(material_pals, ~ ggsci::pal_material(.x)(10)) %>%
purrr::reduce(cbind)
colnames(cols) <- material_pals
cols %>%
as_tibble() %>%
mutate(idx = as.factor(1:10)) %>%
pivot_longer(-idx, names_to = "var", values_to = "val") %>%
mutate(var = factor(var, levels = material_pals[19:1])) %>%
ggplot() +
xlab(NULL) +
ylab(NULL) +
geom_tile(aes(x = idx, y = var, fill = val)) +
scale_fill_identity() +
scale_x_discrete(expand = c(0, 0)) +
scale_y_discrete(expand = c(0, 0)) +
theme_minimal() -> plot_cols

View File

@@ -14,6 +14,16 @@
booktitle = {Oxford Research Encyclopedia of Economics and Finance},
year = {2019}
}
@article{marcjasz2022distributional,
title = {Distributional neural networks for electricity price forecasting},
author = {Marcjasz, Grzegorz and Narajewski, Micha{\l} and Weron, Rafa{\l} and Ziel, Florian},
journal = {Energy Economics},
volume = {125},
pages = {106843},
year = {2023},
doi = {10.1016/j.eneco.2023.106843},
publisher = {Elsevier}
}
@article{atiya2020does,
title = {Why does forecast combination work so well?},
author = {Atiya, Amir F},