Add proof of prop 2

This commit is contained in:
2025-06-25 11:38:11 +02:00
parent 065f2fa142
commit b18f551a84
2 changed files with 329 additions and 192 deletions

View File

@@ -1297,7 +1297,7 @@ if the loss $\ell$ is $G$-Lipschitz and weak exp-concave in its first coordinate
:::
## Proposition + Conditions
## Proposition 1 + Conditions
:::: {.columns}
@@ -1363,7 +1363,7 @@ The strongest case is $\beta=1$ (Strong Convexity)
::::
## Proposition + Theorem
## Proposition 2 + Theorem
:::: {.columns}
@@ -1411,6 +1411,89 @@ $$\widehat{\mathcal{R}}_{t,\min} = 2\overline{\widehat{\mathcal{R}}}^{\text{QL}}
::::
## Proof of P2 {.scrollable}
::: {style="font-size: 85%;"}
:::: {.columns}
::: {.column width="48%"}
First, rewrite $QL_p$ using the check function:
\begin{align}
\rho_p(z) = z(1(0 < z) - p) \label{eq:check}
\end{align}
\begin{align}
QL_p(x, y) &= (\mathbf1(y < x) - p)(x - y) \\
&= \rho_p(x-y)
\end{align}
Now we can express the quantile risk as:
\begin{align}
\mathcal{Q}_p(x) = E[\rho_p(x-y)] = ∫ \rho_p(x-y)f(y)dy
\end{align}
This integral form is where the convolution becomes apparent. A convolution of functions is defined as:
\begin{align}
(g * h)(x) &= ∫ g(z)h(x - z)dz \\
&= ∫ h(x - z)g(z)dz
\end{align}
They are commutative.
:::
::: {.column width="4%"}
:::
::: {.column width="48%"}
Using exchangability of subgradients in covolutions:
\begin{align}
\mathcal{Q}''_p(x) = \rho_p'' * f
\end{align}
To find $\mathcal{Q}''_p(x)$ we rewrite \eqref{eq:check}:
\begin{align}
\rho_p(z) &=
\begin{cases}
z(1 - p) = z - zp, & \text{if } z > 0 \\
z(0 - p) = -zp, & \text{if } z \leq 0
\end{cases} \\
\rho_p'(z) &=
\begin{cases}
1 - p, & \text{if } z > 0 \\
-p, & \text{if } z < 0
\end{cases}
\end{align}
The function $\rho'_p(z)$ jumps from $-p$ to $1-p$ at $0$. So:
\begin{align}
\rho''_p(x) = \delta_0(z) \quad \text{Dirac Delta}
\end{align}
Now the magical part <i class="fa fa-fw fa-wand-magic-sparkles" style="color:var(--col_amber_6);"></i>:
\begin{align}
\mathcal{Q}''_p(x) = \delta_0 * f = f
\end{align}
Because Dirac Delta is the identity element for convolutions.
:::
::::
::::
::::
## A Probabilistic Example