diff --git a/index.qmd b/index.qmd
index a68b7fd..2402f7d 100644
--- a/index.qmd
+++ b/index.qmd
@@ -12,6 +12,8 @@ format:
revealjs:
embed-resources: false
footer: ""
+ width: 1280
+ height: 720
logo: assets/logos_combined.png
theme: [default, sydney.scss, custom.scss]
smaller: true
@@ -19,6 +21,17 @@ format:
slide-number: true
self-contained-math: true
crossrefs-hover: true
+ pagetitle: "De-Fence"
+ html-math-method: mathjax
+ include-in-header:
+ - text: |
+
execute:
daemon: false
highlight-style: github
@@ -342,31 +355,57 @@ Strictly proper for *median* predictions
::::
-## Popular Aggregation Algorithms
+## Popular Algorithms and the Risk
+
+
+
+:::: {.columns}
+
+::: {.column width="58%"}
+
+### Popular Aggregation Algorithms
+
+
#### The naive combination
-$$
-w_{t,k}^{\text{Naive}} = \frac{1}{K}
-$${#eq-wtk_naive}
+
+\begin{equation}
+w_{t,k}^{\text{Naive}} = \frac{1}{K}\label{eq:naive_combination}
+\end{equation}
#### The exponentially weighted average forecaster (EWA)
+\begin{equation}
+ \begin{aligned}
+ w_{t,k}^{\text{EWA}} & = \frac{e^{\eta R_{t,k}} }{\sum_{k = 1}^K e^{\eta R_{t,k}}}\\
+ & =
+ \frac{e^{-\eta \ell(\widehat{X}_{t,k},Y_t)} w^{\text{EWA}}_{t-1,k} }{\sum_{k = 1}^K e^{-\eta \ell(\widehat{X}_{t,k},Y_t)} w^{\text{EWA}}_{t-1,k}}
+ \end{aligned}\label{eq:exp_combination}
+\end{equation}
+
+Du kannst dann auch easy darauf verweisen: \ref{eq:exp_combination}.
+
+:::
+
+::: {.column width="2%"}
+
+:::
+
+::: {.column width="38%"}
+
+### Optimality
+
+In stochastic settings, the cumulative Risk should be analyzed `r Citet(my_bib, "wintenberger2017optimal")`:
\begin{align}
- w_{t,k}^{\text{EWA}} & = \frac{e^{\eta R_{t,k}} }{\sum_{k = 1}^K e^{\eta R_{t,k}}}
- =
- \frac{e^{-\eta \ell(\widehat{X}_{t,k},Y_t)} w^{\text{EWA}}_{t-1,k} }{\sum_{k = 1}^K e^{-\eta \ell(\widehat{X}_{t,k},Y_t)} w^{\text{EWA}}_{t-1,k} }
- \label{eq_ewa_general}
+ &\underbrace{\widetilde{\mathcal{R}}_t = \sum_{i=1}^t \mathbb{E}[\ell(\widetilde{X}_{i},Y_i)|\mathcal{F}_{i-1}]}_{\text{Cumulative Risk of Forecaster}} \\
+ &\underbrace{\widehat{\mathcal{R}}_{t,k} = \sum_{i=1}^t \mathbb{E}[\ell(\widehat{X}_{i,k},Y_i)|\mathcal{F}_{i-1}]}_{\text{Cumulative Risk of Experts}}
+ \label{eq_def_cumrisk}
\end{align}
-#### The polynomial weighted aggregation (PWA)
+:::
-\begin{align}
- w_{t,k}^{\text{PWA}} & = \frac{ 2(R_{t,k})^{q-1}_{+} }{ \|(R_t)_{+}\|^{q-2}_q}
- \label{eq_pwa_general}
-\end{align}
-
-with $q\geq 2$ and $x_{+}$ the (vector) of positive parts of $x$.
+::::
## Optimality
diff --git a/sydney.scss b/sydney.scss
index a87e65a..6d04be8 100644
--- a/sydney.scss
+++ b/sydney.scss
@@ -1,8 +1,8 @@
// See https://quarto.org/docs/presentations/revealjs/themes.html#saas-variables
-$brand-red: #e64626;
-$brand-blue: #fcfcfc;
-$brand-yellow: #FFB800;
+$brand-red: #004c93;
+$brand-blue: #efe4bf;
+$brand-yellow: #ec7206;
$brand-charcoal: #424242;
$brand-gray: #F1F1F1;
$brand-grey: #F1F1F1;