diff --git a/index.qmd b/index.qmd index a68b7fd..2402f7d 100644 --- a/index.qmd +++ b/index.qmd @@ -12,6 +12,8 @@ format: revealjs: embed-resources: false footer: "" + width: 1280 + height: 720 logo: assets/logos_combined.png theme: [default, sydney.scss, custom.scss] smaller: true @@ -19,6 +21,17 @@ format: slide-number: true self-contained-math: true crossrefs-hover: true + pagetitle: "De-Fence" + html-math-method: mathjax + include-in-header: + - text: | + execute: daemon: false highlight-style: github @@ -342,31 +355,57 @@ Strictly proper for *median* predictions :::: -## Popular Aggregation Algorithms +## Popular Algorithms and the Risk + +
+ +:::: {.columns} + +::: {.column width="58%"} + +### Popular Aggregation Algorithms + +
#### The naive combination -$$ -w_{t,k}^{\text{Naive}} = \frac{1}{K} -$${#eq-wtk_naive} + +\begin{equation} +w_{t,k}^{\text{Naive}} = \frac{1}{K}\label{eq:naive_combination} +\end{equation} #### The exponentially weighted average forecaster (EWA) +\begin{equation} + \begin{aligned} + w_{t,k}^{\text{EWA}} & = \frac{e^{\eta R_{t,k}} }{\sum_{k = 1}^K e^{\eta R_{t,k}}}\\ + & = + \frac{e^{-\eta \ell(\widehat{X}_{t,k},Y_t)} w^{\text{EWA}}_{t-1,k} }{\sum_{k = 1}^K e^{-\eta \ell(\widehat{X}_{t,k},Y_t)} w^{\text{EWA}}_{t-1,k}} + \end{aligned}\label{eq:exp_combination} +\end{equation} + +Du kannst dann auch easy darauf verweisen: \ref{eq:exp_combination}. + +::: + +::: {.column width="2%"} + +::: + +::: {.column width="38%"} + +### Optimality + +In stochastic settings, the cumulative Risk should be analyzed `r Citet(my_bib, "wintenberger2017optimal")`: \begin{align} - w_{t,k}^{\text{EWA}} & = \frac{e^{\eta R_{t,k}} }{\sum_{k = 1}^K e^{\eta R_{t,k}}} - = - \frac{e^{-\eta \ell(\widehat{X}_{t,k},Y_t)} w^{\text{EWA}}_{t-1,k} }{\sum_{k = 1}^K e^{-\eta \ell(\widehat{X}_{t,k},Y_t)} w^{\text{EWA}}_{t-1,k} } - \label{eq_ewa_general} + &\underbrace{\widetilde{\mathcal{R}}_t = \sum_{i=1}^t \mathbb{E}[\ell(\widetilde{X}_{i},Y_i)|\mathcal{F}_{i-1}]}_{\text{Cumulative Risk of Forecaster}} \\ + &\underbrace{\widehat{\mathcal{R}}_{t,k} = \sum_{i=1}^t \mathbb{E}[\ell(\widehat{X}_{i,k},Y_i)|\mathcal{F}_{i-1}]}_{\text{Cumulative Risk of Experts}} + \label{eq_def_cumrisk} \end{align} -#### The polynomial weighted aggregation (PWA) +::: -\begin{align} - w_{t,k}^{\text{PWA}} & = \frac{ 2(R_{t,k})^{q-1}_{+} }{ \|(R_t)_{+}\|^{q-2}_q} - \label{eq_pwa_general} -\end{align} - -with $q\geq 2$ and $x_{+}$ the (vector) of positive parts of $x$. +:::: ## Optimality diff --git a/sydney.scss b/sydney.scss index a87e65a..6d04be8 100644 --- a/sydney.scss +++ b/sydney.scss @@ -1,8 +1,8 @@ // See https://quarto.org/docs/presentations/revealjs/themes.html#saas-variables -$brand-red: #e64626; -$brand-blue: #fcfcfc; -$brand-yellow: #FFB800; +$brand-red: #004c93; +$brand-blue: #efe4bf; +$brand-yellow: #ec7206; $brand-charcoal: #424242; $brand-gray: #F1F1F1; $brand-grey: #F1F1F1;