Update slides (cleanup, adjust background colour, begin eq numbering)
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -86,3 +86,4 @@ data/*
|
||||
# Ignore html files for now
|
||||
# TODO: Remove later
|
||||
*.html
|
||||
25_07_phd_defense/index_cache/*
|
||||
|
||||
@@ -22,23 +22,25 @@ execute:
|
||||
highlight-style: github
|
||||
---
|
||||
|
||||
## Outline
|
||||
|
||||
<!--
|
||||
Render with: quarto preview /home/jonathan/git/PHD-Presentation/25_07_phd_defense/index.qmd --no-browser --port 6074
|
||||
-->
|
||||
|
||||
## Outline
|
||||
|
||||
::: {.hidden}
|
||||
$$
|
||||
\newcommand{\A}{{\mathbb A}}
|
||||
$$
|
||||
:::
|
||||
|
||||
<br>
|
||||
|
||||
::: {style="font-size: 150%;"}
|
||||
|
||||
[{{< fa bars-staggered >}}]{style="color: #404040;"}   Introduction & Research Motivation
|
||||
:::
|
||||
|
||||
<br>
|
||||
|
||||
[{{< fa bars-staggered >}}]{style="color: #404040;"}   [Introduction & Research Motivation](#motivation)
|
||||
|
||||
[{{< fa bars-staggered >}}]{style="color: #404040;"}   Overview of the Thesis
|
||||
|
||||
@@ -50,10 +52,6 @@ $$
|
||||
|
||||
[{{< fa binoculars >}}]{style="color: #404040;"}   Contributions & Outlook
|
||||
|
||||
:::
|
||||
|
||||
## PHD DeFence
|
||||
|
||||
```{r, setup, include=FALSE}
|
||||
# Compile with: rmarkdown::render("crps_learning.Rmd")
|
||||
library(latex2exp)
|
||||
@@ -62,10 +60,10 @@ library(dplyr)
|
||||
library(tidyr)
|
||||
library(purrr)
|
||||
library(kableExtra)
|
||||
library(RefManageR)
|
||||
knitr::opts_chunk$set(
|
||||
dev = "svglite" # Use svg figures
|
||||
)
|
||||
library(RefManageR)
|
||||
BibOptions(
|
||||
check.entries = TRUE,
|
||||
bib.style = "authoryear",
|
||||
@@ -84,31 +82,7 @@ col_constant <- "#dd9002"
|
||||
col_optimum <- "#666666"
|
||||
```
|
||||
|
||||
```{r xaringan-panelset, echo=FALSE}
|
||||
xaringanExtra::use_panelset()
|
||||
```
|
||||
|
||||
```{r xaringanExtra-freezeframe, echo=FALSE}
|
||||
xaringanExtra::use_freezeframe(responsive = TRUE)
|
||||
```
|
||||
|
||||
# Outline
|
||||
|
||||
- [Motivation](#motivation)
|
||||
- [The Framework of Prediction under Expert Advice](#pred_under_exp_advice)
|
||||
- [The Continious Ranked Probability Scrore](#crps)
|
||||
- [Optimality of (Pointwise) CRPS-Learning](#crps_optim)
|
||||
- [A Simple Probabilistic Example](#simple_example)
|
||||
- [The Proposed CRPS-Learning Algorithm](#proposed_algorithm)
|
||||
- [Simulation Results](#simulation)
|
||||
- [Possible Extensions](#extensions)
|
||||
- [Application Study](#application)
|
||||
- [Wrap-Up](#conclusion)
|
||||
- [References](#references)
|
||||
|
||||
---
|
||||
|
||||
# Motivation
|
||||
# CRPS Learning
|
||||
|
||||
## Motivation
|
||||
|
||||
@@ -141,7 +115,7 @@ The Idea:
|
||||
|
||||
## Time
|
||||
|
||||
```{r, echo = FALSE, fig.height=6}
|
||||
```{r, echo = FALSE, fig.height=6, cache = TRUE}
|
||||
par(mfrow = c(3, 3), mar = c(2, 2, 2, 2))
|
||||
set.seed(1)
|
||||
# Data
|
||||
@@ -207,7 +181,7 @@ arrows(13, 0.75, 15, 1, , lwd = 4, bty = "n")
|
||||
|
||||
## Distribution
|
||||
|
||||
```{r, echo = FALSE, fig.height=6}
|
||||
```{r, echo = FALSE, fig.height=6, cache = TRUE}
|
||||
par(mfrow = c(3, 3), mar = c(2, 2, 2, 2))
|
||||
set.seed(1)
|
||||
# Data
|
||||
@@ -277,8 +251,6 @@ plot(rowSums(X * w), lwd = 4, type = "l", xlab = "", ylab = "", xaxt = "n", yaxt
|
||||
|
||||
::::
|
||||
|
||||
# The Framework of Prediction under Expert Advice
|
||||
|
||||
## The Framework of Prediction under Expert Advice
|
||||
|
||||
### The sequential framework
|
||||
@@ -323,32 +295,26 @@ Weights are updated sequentially according to the past performance of the $K$ ex
|
||||
|
||||
That is, a loss function $\ell$ is needed. This is used to compute the **cumulative regret** $R_{t,k}$
|
||||
|
||||
\begin{equation}
|
||||
$$
|
||||
R_{t,k} = \widetilde{L}_{t} - \widehat{L}_{t,k} = \sum_{i = 1}^t \ell(\widetilde{X}_{i},Y_i) - \ell(\widehat{X}_{i,k},Y_i)
|
||||
\label{eq_regret}
|
||||
\end{equation}
|
||||
$${#eq-regret}
|
||||
|
||||
The cumulative regret:
|
||||
|
||||
- Indicates the predictive accuracy of the expert $k$ until time $t$.
|
||||
- Measures how much the forecaster *regrets* not having followed the expert's advice
|
||||
|
||||
Popular loss functions for point forecasting `r Citet(my_bib, "gneiting2011making")`:
|
||||
.pull-left[
|
||||
- $\ell_2$-loss $\ell_2(x, y) = | x -y|^2$
|
||||
- optimal for mean prediction
|
||||
]
|
||||
.pull-right[
|
||||
- $\ell_1$-loss $\ell_1(x, y) = | x -y|$
|
||||
- optimal for median predictions
|
||||
]
|
||||
|
||||
|
||||
:::: {.columns}
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
- $\ell_2$-loss $\ell_2(x, y) = | x -y|^2$
|
||||
- optimal for mean prediction
|
||||
$\ell_2$ loss:
|
||||
|
||||
$$\ell_2(x, y) = | x -y|^2$${#eq-elltwo}
|
||||
|
||||
Strictly proper for *mean* prediction
|
||||
|
||||
:::
|
||||
|
||||
@@ -358,8 +324,11 @@ Popular loss functions for point forecasting `r Citet(my_bib, "gneiting2011makin
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
- $\ell_1$-loss $\ell_1(x, y) = | x -y|$
|
||||
- optimal for median predictions
|
||||
$\ell_1$ loss:
|
||||
|
||||
$$\ell_1(x, y) = | x -y|$${#eq-ellone}
|
||||
|
||||
Strictly proper for *median* predictions
|
||||
|
||||
:::
|
||||
|
||||
@@ -370,9 +339,9 @@ Popular loss functions for point forecasting `r Citet(my_bib, "gneiting2011makin
|
||||
|
||||
#### The naive combination
|
||||
|
||||
\begin{equation}
|
||||
$$
|
||||
w_{t,k}^{\text{Naive}} = \frac{1}{K}
|
||||
\end{equation}
|
||||
$${#eq-wtk_naive}
|
||||
|
||||
#### The exponentially weighted average forecaster (EWA)
|
||||
|
||||
@@ -703,7 +672,7 @@ Simple Example:
|
||||
|
||||
## CDFs
|
||||
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=6, fig.align='center', cache = FALSE}
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=6, fig.align='center', cache = TRUE}
|
||||
source("assets/01_common.R")
|
||||
load("assets/crps_learning/01_motivation_01.RData")
|
||||
ggplot(df, aes(x = x, y = y, xend = xend, yend = yend)) +
|
||||
@@ -751,7 +720,7 @@ ggplot(df, aes(x = x, y = y, xend = xend, yend = yend)) +
|
||||
|
||||
## Weights
|
||||
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=6, fig.align='center', cache = FALSE}
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=6, fig.align='center', cache = TRUE}
|
||||
source("assets/01_common.R")
|
||||
load("assets/crps_learning/01_motivation_02.RData")
|
||||
ggplot() +
|
||||
@@ -832,9 +801,6 @@ We receive the constant solution for high values of $\lambda$ when setting $d=1$
|
||||
|
||||
::::
|
||||
|
||||
|
||||
# The Proposed CRPS-Learning Algorithm
|
||||
|
||||
---
|
||||
|
||||
## The Proposed CRPS-Learning Algorithm
|
||||
@@ -980,7 +946,7 @@ The same simulation carried out for different algorithms (1000 runs):
|
||||
|
||||
**Weights of expert 2**
|
||||
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=5, fig.align='center', cache = FALSE}
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=5, fig.align='center', cache = TRUE}
|
||||
load("assets/crps_learning/changing_weights.rds")
|
||||
mod_labs <- c("Optimum", "Pointwise", "Smooth", "Constant")
|
||||
names(mod_labs) <- c("TOptimum", "Pointwise", "Smooth", "Constant")
|
||||
@@ -1094,7 +1060,7 @@ Tuning paramter grids:
|
||||
|
||||
::: {.column width="69%"}
|
||||
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=5, fig.align='center', cache = FALSE}
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=5, fig.align='center', cache = TRUE}
|
||||
load("assets/crps_learning/overview_data.rds")
|
||||
|
||||
data %>%
|
||||
@@ -1168,7 +1134,7 @@ Y_{t} = \mu + Y_{t-1} + \varepsilon_t \quad \text{with} \quad \varepsilon_t = \
|
||||
|
||||
## Significance
|
||||
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=5.5, fig.align='center', cache = FALSE, results='asis'}
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=5.5, fig.align='center', cache = TRUE, results='asis'}
|
||||
load("assets/crps_learning/bernstein_application_study_estimations+learnings_rev1.RData")
|
||||
|
||||
quantile_loss <- function(X, y, tau) {
|
||||
@@ -1243,7 +1209,7 @@ for (j in 1:ncol(table)) {
|
||||
table_out
|
||||
```
|
||||
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=5.5, fig.align='center', cache = FALSE, results='asis'}
|
||||
```{r, echo = FALSE, fig.width=7, fig.height=5.5, fig.align='center', cache = TRUE, results='asis'}
|
||||
MO <- 6
|
||||
OUT <- Mout
|
||||
OUT.num <- OUT
|
||||
@@ -1287,7 +1253,7 @@ table_out2 %>%
|
||||
|
||||
## QL
|
||||
|
||||
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
|
||||
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = TRUE}
|
||||
|
||||
##### Performance across probabilities
|
||||
M <- length(mnames)
|
||||
@@ -1335,7 +1301,7 @@ t(RQL) %>%
|
||||
|
||||
## Cumulative Loss Difference
|
||||
|
||||
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
|
||||
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = TRUE}
|
||||
DQL <- t(apply(apply(QL[1:KK, -c(1:TTinit), ], c(1, 2), mean), 1, cumsum))
|
||||
|
||||
rownames(DQL) <- mnames
|
||||
@@ -1378,7 +1344,7 @@ data %>%
|
||||
|
||||
## Weights (BOAG P-Smooth)
|
||||
|
||||
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
|
||||
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = TRUE}
|
||||
load("assets/crps_learning/weights_data.RData")
|
||||
weights_data %>%
|
||||
ggplot(aes(Date, p, fill = w)) +
|
||||
@@ -1401,7 +1367,7 @@ weights_data %>%
|
||||
|
||||
## Weights (Last)
|
||||
|
||||
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
|
||||
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = TRUE}
|
||||
load("assets/crps_learning/weights_example.RData")
|
||||
weights %>%
|
||||
ggplot(aes(x = p, y = weights, col = Model)) +
|
||||
@@ -1726,7 +1692,7 @@ Computation is easy since we have an analytical solution.
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "1000px"}
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "1000px", cache = TRUE}
|
||||
knitr::include_graphics("assets/mcrps_learning/algorithm.svg")
|
||||
```
|
||||
|
||||
@@ -1791,19 +1757,19 @@ Computation Time: ~30 Minutes
|
||||
|
||||
## Constant
|
||||
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "400"}
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "400", cache = TRUE}
|
||||
knitr::include_graphics("assets/mcrps_learning/constant.svg")
|
||||
```
|
||||
|
||||
## Constant PR
|
||||
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "400"}
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "400", cache = TRUE}
|
||||
knitr::include_graphics("assets/mcrps_learning/constant_pr.svg")
|
||||
```
|
||||
|
||||
## Constant MV
|
||||
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "400"}
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "400", cache = TRUE}
|
||||
knitr::include_graphics("assets/mcrps_learning/constant_mv.svg")
|
||||
```
|
||||
|
||||
@@ -1821,13 +1787,13 @@ knitr::include_graphics("assets/mcrps_learning/constant_mv.svg")
|
||||
|
||||
## Pointwise
|
||||
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "400"}
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "400", cache = TRUE}
|
||||
knitr::include_graphics("assets/mcrps_learning/pointwise.svg")
|
||||
```
|
||||
|
||||
## Smooth
|
||||
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "400"}
|
||||
```{r, fig.align="center", echo=FALSE, out.width = "400", cache = TRUE}
|
||||
knitr::include_graphics("assets/mcrps_learning/smooth_best.svg")
|
||||
```
|
||||
|
||||
@@ -1843,7 +1809,7 @@ knitr::include_graphics("assets/mcrps_learning/smooth_best.svg")
|
||||
|
||||
::: {.column width="55%"}
|
||||
|
||||
```{r}
|
||||
```{r, cache = TRUE}
|
||||
load("assets/mcrps_learning/naive_table_df.rds")
|
||||
|
||||
table_naive <- naive_table_df %>%
|
||||
@@ -1987,7 +1953,7 @@ Foo
|
||||
|
||||
## Results
|
||||
|
||||
```{r, warning=FALSE, fig.align="center", echo=FALSE, fig.width=12, fig.height=6}
|
||||
```{r, warning=FALSE, fig.align="center", echo=FALSE, fig.width=12, fig.height=6, cache = TRUE}
|
||||
load("assets/mcrps_learning/pars_data.rds")
|
||||
pars_data %>%
|
||||
ggplot(aes(x = dates, y = value)) +
|
||||
@@ -2026,7 +1992,7 @@ pars_data %>%
|
||||
|
||||
## Results: Hour 16:00-17:00
|
||||
|
||||
```{r, fig.align="center", echo=FALSE, fig.width=12, fig.height=6}
|
||||
```{r, fig.align="center", echo=FALSE, fig.width=12, fig.height=6, cache = TRUE}
|
||||
load("assets/mcrps_learning/weights_h.rds")
|
||||
weights_h %>%
|
||||
ggplot(aes(date, q, fill = weight)) +
|
||||
@@ -2066,7 +2032,7 @@ weights_h %>%
|
||||
|
||||
## Results: Median
|
||||
|
||||
```{r, fig.align="center", echo=FALSE, fig.width=12, fig.height=6}
|
||||
```{r, fig.align="center", echo=FALSE, fig.width=12, fig.height=6, cache = TRUE}
|
||||
load("assets/mcrps_learning/weights_q.rds")
|
||||
weights_q %>%
|
||||
mutate(hour = as.numeric(hour) - 1) %>%
|
||||
@@ -2157,7 +2123,7 @@ We use `Rcpp` modules to expose a class to R
|
||||
|
||||
Basis specification `b_smooth_pr` is internally passed to `make_basis_mats()`:
|
||||
|
||||
```{r, echo = TRUE, eval = FALSE, cache = FALSE}
|
||||
```{r, echo = TRUE, eval = FALSE, cache = TRUE}
|
||||
mod <- online(
|
||||
y = Y,
|
||||
experts = experts,
|
||||
@@ -2237,6 +2203,8 @@ Get these slides:
|
||||
|
||||
# Modeling Volatility and Dependence of European Carbon and Energy Prices
|
||||
|
||||
TODO: Add Reference
|
||||
|
||||
---
|
||||
|
||||
## Motivation
|
||||
@@ -2296,7 +2264,7 @@ How can the dynamics be characterized?
|
||||
|
||||
## Data
|
||||
|
||||
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center"}
|
||||
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center", cache = TRUE}
|
||||
readr::read_csv("assets/voldep/2022_10_14_eur_ref_co2_adj_hvpi_ex_nrg.csv") %>%
|
||||
select(-EUR_USD, -hvpi_x_nrg) %>%
|
||||
pivot_longer(-Date) %>%
|
||||
@@ -2573,7 +2541,7 @@ Relative improvement in ES compared to $\text{RW}^{\sigma, \rho}$
|
||||
|
||||
Cellcolor: w.r.t test statistic of Diebold-Mariano test (testing wether the model outperformes the benchmark, greener = better).
|
||||
|
||||
```{r, echo=FALSE, results='asis'}
|
||||
```{r, echo=FALSE, results='asis', cache = TRUE}
|
||||
load("assets/voldep/energy_df.Rdata")
|
||||
table_energy <- energy %>%
|
||||
kbl(
|
||||
@@ -2673,7 +2641,7 @@ table_energy %>%
|
||||
|
||||
Improvement in CRPS of selected models relative to $\textrm{RW}^{\sigma, \rho}_{}$ in % (higher = better). Colored according to the test statistic of a DM-Test comparing to $\textrm{RW}^{\sigma, \rho}_{}$ (greener means lower test statistic i.e., better performance compared to $\textrm{RW}^{\sigma, \rho}_{}$).
|
||||
|
||||
```{r, echo=FALSE, results = 'asis'}
|
||||
```{r, echo=FALSE, results = 'asis', cache = TRUE}
|
||||
load("assets/voldep/crps_df.Rdata")
|
||||
|
||||
table_crps <- crps %>%
|
||||
@@ -2752,7 +2720,7 @@ Conclusion: the Improvements seen before must be attributed to other parts of th
|
||||
|
||||
Improvement in RMSE score of selected models relative to $\textrm{RW}^{\sigma, \rho}_{}$ in % (higher = better). Colored according to the test statistic of a DM-Test comparing to $\textrm{RW}^{\sigma, \rho}_{}$ (greener means lower test statistic i.e., better performance compared to $\textrm{RW}^{\sigma, \rho}_{}$).
|
||||
|
||||
```{r, echo=FALSE, results = 'asis'}
|
||||
```{r, echo=FALSE, results = 'asis', cache = TRUE}
|
||||
load("assets/voldep/rmsq_df.Rdata")
|
||||
|
||||
table_rmsq <- rmsq %>%
|
||||
@@ -2802,7 +2770,7 @@ table_rmsq %>%
|
||||
|
||||
## Evolution of Linear Dependence $\Xi$
|
||||
|
||||
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center"}
|
||||
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center", cache = TRUE}
|
||||
load("assets/voldep/plot_rho_df.Rdata")
|
||||
ggplot() +
|
||||
geom_line(
|
||||
@@ -2887,7 +2855,7 @@ ggplot() +
|
||||
|
||||
## Predictive Quantiles (Russian Invasion)
|
||||
|
||||
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center"}
|
||||
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center", cache = TRUE}
|
||||
load("assets/voldep/plot_quant_df.Rdata")
|
||||
|
||||
plot_quant_data %>% ggplot(aes(x = date, y = value)) +
|
||||
@@ -2981,43 +2949,7 @@ Accounting for heteroscedasticity or stabilizing the variance via log transforma
|
||||
|
||||
::::
|
||||
|
||||
## Columns Template
|
||||
|
||||
:::: {.columns}
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
Baz
|
||||
|
||||
:::
|
||||
|
||||
::: {.column width="2%"}
|
||||
|
||||
:::
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
foo
|
||||
|
||||
:::
|
||||
|
||||
::::
|
||||
|
||||
## Paneltabset Template
|
||||
|
||||
::: {.panel-tabset}
|
||||
|
||||
## Baz
|
||||
|
||||
Bar
|
||||
|
||||
## Bam
|
||||
|
||||
Foo
|
||||
|
||||
::::
|
||||
|
||||
# References
|
||||
## References
|
||||
|
||||
```{r refs1, echo=FALSE, results="asis"}
|
||||
PrintBibliography(my_bib, .opts = list(style = "text"))
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
// See https://quarto.org/docs/presentations/revealjs/themes.html#saas-variables
|
||||
|
||||
$brand-red: #e64626;
|
||||
$brand-blue: #0148A4;
|
||||
$brand-blue: #fcfcfc;
|
||||
$brand-yellow: #FFB800;
|
||||
$brand-charcoal: #424242;
|
||||
$brand-gray: #F1F1F1;
|
||||
|
||||
Reference in New Issue
Block a user