Update slides (cleanup, adjust background colour, begin eq numbering)

This commit is contained in:
2025-05-23 23:08:03 +02:00
parent 5b58a7d4c2
commit c7a5519e0f
3 changed files with 60 additions and 127 deletions

1
.gitignore vendored
View File

@@ -86,3 +86,4 @@ data/*
# Ignore html files for now
# TODO: Remove later
*.html
25_07_phd_defense/index_cache/*

View File

@@ -22,23 +22,25 @@ execute:
highlight-style: github
---
## Outline
<!--
Render with: quarto preview /home/jonathan/git/PHD-Presentation/25_07_phd_defense/index.qmd --no-browser --port 6074
-->
## Outline
::: {.hidden}
$$
\newcommand{\A}{{\mathbb A}}
$$
:::
<br>
::: {style="font-size: 150%;"}
[{{< fa bars-staggered >}}]{style="color: #404040;"} &ensp; Introduction & Research Motivation
:::
<br>
[{{< fa bars-staggered >}}]{style="color: #404040;"} &ensp; [Introduction & Research Motivation](#motivation)
[{{< fa bars-staggered >}}]{style="color: #404040;"} &ensp; Overview of the Thesis
@@ -50,10 +52,6 @@ $$
[{{< fa binoculars >}}]{style="color: #404040;"} &ensp; Contributions & Outlook
:::
## PHD DeFence
```{r, setup, include=FALSE}
# Compile with: rmarkdown::render("crps_learning.Rmd")
library(latex2exp)
@@ -62,10 +60,10 @@ library(dplyr)
library(tidyr)
library(purrr)
library(kableExtra)
library(RefManageR)
knitr::opts_chunk$set(
dev = "svglite" # Use svg figures
)
library(RefManageR)
BibOptions(
check.entries = TRUE,
bib.style = "authoryear",
@@ -84,31 +82,7 @@ col_constant <- "#dd9002"
col_optimum <- "#666666"
```
```{r xaringan-panelset, echo=FALSE}
xaringanExtra::use_panelset()
```
```{r xaringanExtra-freezeframe, echo=FALSE}
xaringanExtra::use_freezeframe(responsive = TRUE)
```
# Outline
- [Motivation](#motivation)
- [The Framework of Prediction under Expert Advice](#pred_under_exp_advice)
- [The Continious Ranked Probability Scrore](#crps)
- [Optimality of (Pointwise) CRPS-Learning](#crps_optim)
- [A Simple Probabilistic Example](#simple_example)
- [The Proposed CRPS-Learning Algorithm](#proposed_algorithm)
- [Simulation Results](#simulation)
- [Possible Extensions](#extensions)
- [Application Study](#application)
- [Wrap-Up](#conclusion)
- [References](#references)
---
# Motivation
# CRPS Learning
## Motivation
@@ -141,7 +115,7 @@ The Idea:
## Time
```{r, echo = FALSE, fig.height=6}
```{r, echo = FALSE, fig.height=6, cache = TRUE}
par(mfrow = c(3, 3), mar = c(2, 2, 2, 2))
set.seed(1)
# Data
@@ -207,7 +181,7 @@ arrows(13, 0.75, 15, 1, , lwd = 4, bty = "n")
## Distribution
```{r, echo = FALSE, fig.height=6}
```{r, echo = FALSE, fig.height=6, cache = TRUE}
par(mfrow = c(3, 3), mar = c(2, 2, 2, 2))
set.seed(1)
# Data
@@ -277,8 +251,6 @@ plot(rowSums(X * w), lwd = 4, type = "l", xlab = "", ylab = "", xaxt = "n", yaxt
::::
# The Framework of Prediction under Expert Advice
## The Framework of Prediction under Expert Advice
### The sequential framework
@@ -323,32 +295,26 @@ Weights are updated sequentially according to the past performance of the $K$ ex
That is, a loss function $\ell$ is needed. This is used to compute the **cumulative regret** $R_{t,k}$
\begin{equation}
$$
R_{t,k} = \widetilde{L}_{t} - \widehat{L}_{t,k} = \sum_{i = 1}^t \ell(\widetilde{X}_{i},Y_i) - \ell(\widehat{X}_{i,k},Y_i)
\label{eq_regret}
\end{equation}
$${#eq-regret}
The cumulative regret:
- Indicates the predictive accuracy of the expert $k$ until time $t$.
- Measures how much the forecaster *regrets* not having followed the expert's advice
Popular loss functions for point forecasting `r Citet(my_bib, "gneiting2011making")`:
.pull-left[
- $\ell_2$-loss $\ell_2(x, y) = | x -y|^2$
- optimal for mean prediction
]
.pull-right[
- $\ell_1$-loss $\ell_1(x, y) = | x -y|$
- optimal for median predictions
]
:::: {.columns}
::: {.column width="48%"}
- $\ell_2$-loss $\ell_2(x, y) = | x -y|^2$
- optimal for mean prediction
$\ell_2$ loss:
$$\ell_2(x, y) = | x -y|^2$${#eq-elltwo}
Strictly proper for *mean* prediction
:::
@@ -358,8 +324,11 @@ Popular loss functions for point forecasting `r Citet(my_bib, "gneiting2011makin
::: {.column width="48%"}
- $\ell_1$-loss $\ell_1(x, y) = | x -y|$
- optimal for median predictions
$\ell_1$ loss:
$$\ell_1(x, y) = | x -y|$${#eq-ellone}
Strictly proper for *median* predictions
:::
@@ -370,9 +339,9 @@ Popular loss functions for point forecasting `r Citet(my_bib, "gneiting2011makin
#### The naive combination
\begin{equation}
$$
w_{t,k}^{\text{Naive}} = \frac{1}{K}
\end{equation}
$${#eq-wtk_naive}
#### The exponentially weighted average forecaster (EWA)
@@ -703,7 +672,7 @@ Simple Example:
## CDFs
```{r, echo = FALSE, fig.width=7, fig.height=6, fig.align='center', cache = FALSE}
```{r, echo = FALSE, fig.width=7, fig.height=6, fig.align='center', cache = TRUE}
source("assets/01_common.R")
load("assets/crps_learning/01_motivation_01.RData")
ggplot(df, aes(x = x, y = y, xend = xend, yend = yend)) +
@@ -751,7 +720,7 @@ ggplot(df, aes(x = x, y = y, xend = xend, yend = yend)) +
## Weights
```{r, echo = FALSE, fig.width=7, fig.height=6, fig.align='center', cache = FALSE}
```{r, echo = FALSE, fig.width=7, fig.height=6, fig.align='center', cache = TRUE}
source("assets/01_common.R")
load("assets/crps_learning/01_motivation_02.RData")
ggplot() +
@@ -832,9 +801,6 @@ We receive the constant solution for high values of $\lambda$ when setting $d=1$
::::
# The Proposed CRPS-Learning Algorithm
---
## The Proposed CRPS-Learning Algorithm
@@ -980,7 +946,7 @@ The same simulation carried out for different algorithms (1000 runs):
**Weights of expert 2**
```{r, echo = FALSE, fig.width=7, fig.height=5, fig.align='center', cache = FALSE}
```{r, echo = FALSE, fig.width=7, fig.height=5, fig.align='center', cache = TRUE}
load("assets/crps_learning/changing_weights.rds")
mod_labs <- c("Optimum", "Pointwise", "Smooth", "Constant")
names(mod_labs) <- c("TOptimum", "Pointwise", "Smooth", "Constant")
@@ -1094,7 +1060,7 @@ Tuning paramter grids:
::: {.column width="69%"}
```{r, echo = FALSE, fig.width=7, fig.height=5, fig.align='center', cache = FALSE}
```{r, echo = FALSE, fig.width=7, fig.height=5, fig.align='center', cache = TRUE}
load("assets/crps_learning/overview_data.rds")
data %>%
@@ -1168,7 +1134,7 @@ Y_{t} = \mu + Y_{t-1} + \varepsilon_t \quad \text{with} \quad \varepsilon_t = \
## Significance
```{r, echo = FALSE, fig.width=7, fig.height=5.5, fig.align='center', cache = FALSE, results='asis'}
```{r, echo = FALSE, fig.width=7, fig.height=5.5, fig.align='center', cache = TRUE, results='asis'}
load("assets/crps_learning/bernstein_application_study_estimations+learnings_rev1.RData")
quantile_loss <- function(X, y, tau) {
@@ -1243,7 +1209,7 @@ for (j in 1:ncol(table)) {
table_out
```
```{r, echo = FALSE, fig.width=7, fig.height=5.5, fig.align='center', cache = FALSE, results='asis'}
```{r, echo = FALSE, fig.width=7, fig.height=5.5, fig.align='center', cache = TRUE, results='asis'}
MO <- 6
OUT <- Mout
OUT.num <- OUT
@@ -1287,7 +1253,7 @@ table_out2 %>%
## QL
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = TRUE}
##### Performance across probabilities
M <- length(mnames)
@@ -1335,7 +1301,7 @@ t(RQL) %>%
## Cumulative Loss Difference
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = TRUE}
DQL <- t(apply(apply(QL[1:KK, -c(1:TTinit), ], c(1, 2), mean), 1, cumsum))
rownames(DQL) <- mnames
@@ -1378,7 +1344,7 @@ data %>%
## Weights (BOAG P-Smooth)
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = TRUE}
load("assets/crps_learning/weights_data.RData")
weights_data %>%
ggplot(aes(Date, p, fill = w)) +
@@ -1401,7 +1367,7 @@ weights_data %>%
## Weights (Last)
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = FALSE}
```{r, echo = FALSE, fig.width=13, fig.height=5.5, fig.align='center', cache = TRUE}
load("assets/crps_learning/weights_example.RData")
weights %>%
ggplot(aes(x = p, y = weights, col = Model)) +
@@ -1726,7 +1692,7 @@ Computation is easy since we have an analytical solution.
::: {.column width="48%"}
```{r, fig.align="center", echo=FALSE, out.width = "1000px"}
```{r, fig.align="center", echo=FALSE, out.width = "1000px", cache = TRUE}
knitr::include_graphics("assets/mcrps_learning/algorithm.svg")
```
@@ -1791,19 +1757,19 @@ Computation Time: ~30 Minutes
## Constant
```{r, fig.align="center", echo=FALSE, out.width = "400"}
```{r, fig.align="center", echo=FALSE, out.width = "400", cache = TRUE}
knitr::include_graphics("assets/mcrps_learning/constant.svg")
```
## Constant PR
```{r, fig.align="center", echo=FALSE, out.width = "400"}
```{r, fig.align="center", echo=FALSE, out.width = "400", cache = TRUE}
knitr::include_graphics("assets/mcrps_learning/constant_pr.svg")
```
## Constant MV
```{r, fig.align="center", echo=FALSE, out.width = "400"}
```{r, fig.align="center", echo=FALSE, out.width = "400", cache = TRUE}
knitr::include_graphics("assets/mcrps_learning/constant_mv.svg")
```
@@ -1821,13 +1787,13 @@ knitr::include_graphics("assets/mcrps_learning/constant_mv.svg")
## Pointwise
```{r, fig.align="center", echo=FALSE, out.width = "400"}
```{r, fig.align="center", echo=FALSE, out.width = "400", cache = TRUE}
knitr::include_graphics("assets/mcrps_learning/pointwise.svg")
```
## Smooth
```{r, fig.align="center", echo=FALSE, out.width = "400"}
```{r, fig.align="center", echo=FALSE, out.width = "400", cache = TRUE}
knitr::include_graphics("assets/mcrps_learning/smooth_best.svg")
```
@@ -1843,7 +1809,7 @@ knitr::include_graphics("assets/mcrps_learning/smooth_best.svg")
::: {.column width="55%"}
```{r}
```{r, cache = TRUE}
load("assets/mcrps_learning/naive_table_df.rds")
table_naive <- naive_table_df %>%
@@ -1987,7 +1953,7 @@ Foo
## Results
```{r, warning=FALSE, fig.align="center", echo=FALSE, fig.width=12, fig.height=6}
```{r, warning=FALSE, fig.align="center", echo=FALSE, fig.width=12, fig.height=6, cache = TRUE}
load("assets/mcrps_learning/pars_data.rds")
pars_data %>%
ggplot(aes(x = dates, y = value)) +
@@ -2026,7 +1992,7 @@ pars_data %>%
## Results: Hour 16:00-17:00
```{r, fig.align="center", echo=FALSE, fig.width=12, fig.height=6}
```{r, fig.align="center", echo=FALSE, fig.width=12, fig.height=6, cache = TRUE}
load("assets/mcrps_learning/weights_h.rds")
weights_h %>%
ggplot(aes(date, q, fill = weight)) +
@@ -2066,7 +2032,7 @@ weights_h %>%
## Results: Median
```{r, fig.align="center", echo=FALSE, fig.width=12, fig.height=6}
```{r, fig.align="center", echo=FALSE, fig.width=12, fig.height=6, cache = TRUE}
load("assets/mcrps_learning/weights_q.rds")
weights_q %>%
mutate(hour = as.numeric(hour) - 1) %>%
@@ -2157,7 +2123,7 @@ We use `Rcpp` modules to expose a class to R
Basis specification `b_smooth_pr` is internally passed to `make_basis_mats()`:
```{r, echo = TRUE, eval = FALSE, cache = FALSE}
```{r, echo = TRUE, eval = FALSE, cache = TRUE}
mod <- online(
y = Y,
experts = experts,
@@ -2237,6 +2203,8 @@ Get these slides:
# Modeling Volatility and Dependence of European Carbon and Energy Prices
TODO: Add Reference
---
## Motivation
@@ -2296,7 +2264,7 @@ How can the dynamics be characterized?
## Data
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center"}
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center", cache = TRUE}
readr::read_csv("assets/voldep/2022_10_14_eur_ref_co2_adj_hvpi_ex_nrg.csv") %>%
select(-EUR_USD, -hvpi_x_nrg) %>%
pivot_longer(-Date) %>%
@@ -2573,7 +2541,7 @@ Relative improvement in ES compared to $\text{RW}^{\sigma, \rho}$
Cellcolor: w.r.t test statistic of Diebold-Mariano test (testing wether the model outperformes the benchmark, greener = better).
```{r, echo=FALSE, results='asis'}
```{r, echo=FALSE, results='asis', cache = TRUE}
load("assets/voldep/energy_df.Rdata")
table_energy <- energy %>%
kbl(
@@ -2673,7 +2641,7 @@ table_energy %>%
Improvement in CRPS of selected models relative to $\textrm{RW}^{\sigma, \rho}_{}$ in % (higher = better). Colored according to the test statistic of a DM-Test comparing to $\textrm{RW}^{\sigma, \rho}_{}$ (greener means lower test statistic i.e., better performance compared to $\textrm{RW}^{\sigma, \rho}_{}$).
```{r, echo=FALSE, results = 'asis'}
```{r, echo=FALSE, results = 'asis', cache = TRUE}
load("assets/voldep/crps_df.Rdata")
table_crps <- crps %>%
@@ -2752,7 +2720,7 @@ Conclusion: the Improvements seen before must be attributed to other parts of th
Improvement in RMSE score of selected models relative to $\textrm{RW}^{\sigma, \rho}_{}$ in % (higher = better). Colored according to the test statistic of a DM-Test comparing to $\textrm{RW}^{\sigma, \rho}_{}$ (greener means lower test statistic i.e., better performance compared to $\textrm{RW}^{\sigma, \rho}_{}$).
```{r, echo=FALSE, results = 'asis'}
```{r, echo=FALSE, results = 'asis', cache = TRUE}
load("assets/voldep/rmsq_df.Rdata")
table_rmsq <- rmsq %>%
@@ -2802,7 +2770,7 @@ table_rmsq %>%
## Evolution of Linear Dependence $\Xi$
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center"}
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center", cache = TRUE}
load("assets/voldep/plot_rho_df.Rdata")
ggplot() +
geom_line(
@@ -2887,7 +2855,7 @@ ggplot() +
## Predictive Quantiles (Russian Invasion)
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center"}
```{r, echo=FALSE, fig.width = 12, fig.height = 6, fig.align="center", cache = TRUE}
load("assets/voldep/plot_quant_df.Rdata")
plot_quant_data %>% ggplot(aes(x = date, y = value)) +
@@ -2981,43 +2949,7 @@ Accounting for heteroscedasticity or stabilizing the variance via log transforma
::::
## Columns Template
:::: {.columns}
::: {.column width="48%"}
Baz
:::
::: {.column width="2%"}
:::
::: {.column width="48%"}
foo
:::
::::
## Paneltabset Template
::: {.panel-tabset}
## Baz
Bar
## Bam
Foo
::::
# References
## References
```{r refs1, echo=FALSE, results="asis"}
PrintBibliography(my_bib, .opts = list(style = "text"))

View File

@@ -1,7 +1,7 @@
// See https://quarto.org/docs/presentations/revealjs/themes.html#saas-variables
$brand-red: #e64626;
$brand-blue: #0148A4;
$brand-blue: #fcfcfc;
$brand-yellow: #FFB800;
$brand-charcoal: #424242;
$brand-gray: #F1F1F1;