\[\begin{equation}
\frac{1}{t}\left(\widetilde{\mathcal{R}}_t - \widehat{\mathcal{R}}_{t,\min} \right) \stackrel{t\to \infty}{\rightarrow} a \quad \text{with} \quad a \leq 0.
\label{eq_opt_select}
-\end{equation}\] The forecaster is asymptotically not worse than the best expert \(\widehat{\mathcal{R}}_{t,\min}\).
+\end{equation}\] The forecaster is asymptotically not worse than the best expert.
The convex aggregation problem
\[\begin{equation}
\frac{1}{t}\left(\widetilde{\mathcal{R}}_t - \widehat{\mathcal{R}}_{t,\pi} \right) \stackrel{t\to \infty}{\rightarrow} b \quad \text{with} \quad b \leq 0 .
\label{eq_opt_conv}
-\end{equation}\] The forecaster is asymptotically not worse than the best convex combination \(\widehat{X}_{t,\pi}\) in hindsight (oracle).
+\end{equation}\] The forecaster is asymptotically not worse than the best convex combination in hindsight (oracle).
Berrisch, J., Pappert, S., Ziel, F., & Arsova, A. (2023). Modeling volatility and dependence of European carbon and energy prices. Finance Research Letters, 52, 103503.
diff --git a/index.qmd b/index.qmd
index f02040a..583fc03 100644
--- a/index.qmd
+++ b/index.qmd
@@ -765,7 +765,7 @@ Berrisch, J., & Ziel, F. [-@BERRISCH2023105221]. *Journal of Econometrics*, 237(
::: {.column width="48%"}
-The Idea:
+### The Idea:
- Combine multiple forecasts instead of choosing one
@@ -958,7 +958,7 @@ Each day, $t = 1, 2, ... T$
- The experts can be institutions, persons, or models
- The forecasts can be point-forecasts (i.e., mean or median) or full predictive distributions
-- We do not need any assumptions concerning the underlying data
+- We do not need a distributional assumption concerning the underlying data
- @cesa2006prediction
:::
@@ -1080,7 +1080,7 @@ In stochastic settings, the cumulative Risk should be analyzed @wintenberger2017
\frac{1}{t}\left(\widetilde{\mathcal{R}}_t - \widehat{\mathcal{R}}_{t,\min} \right) \stackrel{t\to \infty}{\rightarrow} a \quad \text{with} \quad a \leq 0.
\label{eq_opt_select}
\end{equation}
-The forecaster is asymptotically not worse than the best expert $\widehat{\mathcal{R}}_{t,\min}$.
+The forecaster is asymptotically not worse than the best expert.
### The convex aggregation problem
@@ -1088,7 +1088,7 @@ The forecaster is asymptotically not worse than the best expert $\widehat{\mathc
\frac{1}{t}\left(\widetilde{\mathcal{R}}_t - \widehat{\mathcal{R}}_{t,\pi} \right) \stackrel{t\to \infty}{\rightarrow} b \quad \text{with} \quad b \leq 0 .
\label{eq_opt_conv}
\end{equation}
-The forecaster is asymptotically not worse than the best convex combination $\widehat{X}_{t,\pi}$ in hindsight (**oracle**).
+The forecaster is asymptotically not worse than the best convex combination in hindsight (**oracle**).
:::
@@ -1209,7 +1209,7 @@ The same algorithm satisfies that there exist a $C>0$ such that for $x>0$ it hol
\label{eq_boa_opt_select}
\end{equation}
-if $Y_t$ is bounded, the considered loss $\ell$ is convex $G$-Lipschitz and weak exp-concave in its first coordinate.
+if $Y_t$ is bounded, the considered loss $\ell$ is convex, $G$-Lipschitz, and weak exp-concave in its first coordinate.
Almost optimal w.r.t. *selection* \eqref{eq_optp_select} @gaillard2018efficient.
@@ -3649,13 +3649,11 @@ Accounting for heteroscedasticity or stabilizing the variance via log transforma
::: {.column width="48%"}
-
-
-
+
- @berrisch2023modeling
+ Berrisch, J., Pappert, S., Ziel, F., & Arsova, A. [-@berrisch2023modeling]. Modeling volatility and dependence of European carbon and energy prices. Finance Research Letters, 52, 103503.
:::