Files
PHD-Presentation/test.R
2025-05-18 22:37:38 +02:00

72 lines
1.8 KiB
R

# %%
library(profoc)
library(ggplot2)
library(tidyr)
library(dplyr)
library(readr)
# Creating faceted plots for different knot values and mu values
# Create a function to generate the data for a given number of knots and mu value
generate_basis_data <- function(num_knots, mu_value, sig_value, nonc_value, tailw_value, deg_value) {
grid <- seq(from = 0.01, to = 0.99, length.out = 50)
# Use provided degree
B <- profoc:::make_basis_matrix(grid,
profoc::make_knots(
n = num_knots,
mu = mu_value,
sig = sig_value,
nonc = nonc_value,
tailw = tailw_value,
deg = deg_value
),
deg = deg_value
)
B_mat <- round(as.matrix(B),2)
df <- as.data.frame(B_mat)
df$x <- grid
df_long <- pivot_longer(df,
cols = -x,
names_to = "b",
values_to = "y"
)
df_long$knots <- num_knots
df_long$mu <- mu_value
df_long$sig <- sig_value
df_long$nonc <- nonc_value
df_long$tailw <- tailw_value
df_long$deg <- deg_value
return(df_long)
}
# Generate data for each combination of knot, mu, sig, nonc, tailw, and deg
knot_values <- c(10)
mu_values <- seq(0.1, 0.9, by = 0.2)
sig_values <- 2^(-2:2)
nonc_values <- c(-4,-2,0,2,4)
tailw_values <- 2^(-2:2)
# Create an empty list to store all combinations
all_data <- list()
counter <- 1
# Nested loops to cover all parameter combinations
for (k in knot_values) {
print(paste("Processing knots:", k))
for (m in mu_values) {
print(paste("Processing mu:", m))
for (s in sig_values) {
for (nc in nonc_values) {
for (tw in tailw_values) {
all_data[[counter]] <- generate_basis_data(5, m, s, nc, tw, 2)
counter <- counter + 1
}
}
}
}
}
# Combine all data frames
all_data <- bind_rows(all_data)
write_csv(all_data, "basis_functions.csv")