Files
PHD-Presentation/test.R

53 lines
1.2 KiB
R

# %%
library(profoc)
library(ggplot2)
library(tidyr)
library(dplyr)
library(readr)
# Creating faceted plots for different knot values and mu values
# Create a function to generate the data for a given number of knots and mu value
generate_basis_data <- function(num_knots, mu_value) {
B <- profoc:::make_basis_matrix(1:99 / 100,
profoc::make_knots(
n = num_knots,
mu = mu_value,
sig = 1,
nonc = 0,
deg = 1
),
deg = 3
)
df <- as.data.frame(as.matrix(B))
df$x <- 1:99 / 100
df_long <- pivot_longer(df,
cols = -x,
names_to = "b",
values_to = "y"
)
df_long$knots <- num_knots # Store knot count as numeric
df_long$mu <- mu_value # Add mu parameter information
return(df_long)
}
# Generate data for each combination of knot value and mu value
knot_values <- 5:10
mu_values <- seq(0.1, 0.9, by = 0.1)
# Create an empty list to store all combinations
all_data <- list()
counter <- 1
# Generate data for all combinations
for (k in knot_values) {
for (m in mu_values) {
all_data[[counter]] <- generate_basis_data(k, m)
counter <- counter + 1
}
}
# Combine all data frames
all_data <- bind_rows(all_data)
write_csv(all_data, "basis_functions.csv")