Improve prop2 proof
This commit is contained in:
10
index.html
10
index.html
@@ -26411,20 +26411,20 @@ w_{t,k}^{\text{Naive}} = \frac{1}{K}\label{eq:naive_combination}
|
||||
<div class="column" style="width:48%;">
|
||||
<p>First, rewrite <span class="math inline">\(QL_p\)</span> using the check function:</p>
|
||||
<p><span class="math display">\[\begin{align}
|
||||
\rho_p(z) = z(1(0 < z) - p) \label{eq:check}
|
||||
\rho_p(z) = z(\mathbb{1}(0 < z) - p) \label{eq:check}
|
||||
\end{align}\]</span></p>
|
||||
<p><span class="math display">\[\begin{align}
|
||||
QL_p(x, y) &= (\mathbf1(y < x) - p)(x - y) \\
|
||||
QL_p(x, y) &= (\mathbb{1}(y < x) - p)(x - y) \\
|
||||
&= \rho_p(x-y)
|
||||
\end{align}\]</span></p>
|
||||
<p>Now we can express the quantile risk as:</p>
|
||||
<p><span class="math display">\[\begin{align}
|
||||
\mathcal{Q}_p(x) = E[\rho_p(x-y)] = ∫ \rho_p(x-y)f(y)dy
|
||||
\mathcal{Q}_p(x) = \mathbb{E}[\rho_p(x-y)] = ∫ \rho_p(x-y)f(y)dy
|
||||
\end{align}\]</span></p>
|
||||
<p>This integral form is where the convolution becomes apparent. A convolution of functions is defined as:</p>
|
||||
<p><span class="math display">\[\begin{align}
|
||||
(g * h)(x) &= ∫ g(z)h(x - z)dz \\
|
||||
&= ∫ h(x - z)g(z)dz
|
||||
&= ∫ g(x - z)h(z)dz
|
||||
\end{align}\]</span></p>
|
||||
<p>They are commutative.</p>
|
||||
</div><div class="column" style="width:4%;">
|
||||
@@ -26449,7 +26449,7 @@ w_{t,k}^{\text{Naive}} = \frac{1}{K}\label{eq:naive_combination}
|
||||
\end{align}\]</span></p>
|
||||
<p>The function <span class="math inline">\(\rho'_p(z)\)</span> jumps from <span class="math inline">\(-p\)</span> to <span class="math inline">\(1-p\)</span> at <span class="math inline">\(0\)</span>. So:</p>
|
||||
<p><span class="math display">\[\begin{align}
|
||||
\rho''_p(x) = \delta_0(z) \quad \text{Dirac Delta}
|
||||
\rho''_p(x) = \delta_0(z) \quad \text{(Dirac Delta)}
|
||||
\end{align}\]</span></p>
|
||||
<p>Now the magical part <i class="fa fa-fw fa-wand-magic-sparkles" style="color:var(--col_amber_6);"></i>:</p>
|
||||
<p><span class="math display">\[\begin{align}
|
||||
|
||||
10
index.qmd
10
index.qmd
@@ -1422,25 +1422,25 @@ $$\widehat{\mathcal{R}}_{t,\min} = 2\overline{\widehat{\mathcal{R}}}^{\text{QL}}
|
||||
First, rewrite $QL_p$ using the check function:
|
||||
|
||||
\begin{align}
|
||||
\rho_p(z) = z(1(0 < z) - p) \label{eq:check}
|
||||
\rho_p(z) = z(\mathbb{1}(0 < z) - p) \label{eq:check}
|
||||
\end{align}
|
||||
|
||||
\begin{align}
|
||||
QL_p(x, y) &= (\mathbf1(y < x) - p)(x - y) \\
|
||||
QL_p(x, y) &= (\mathbb{1}(y < x) - p)(x - y) \\
|
||||
&= \rho_p(x-y)
|
||||
\end{align}
|
||||
|
||||
Now we can express the quantile risk as:
|
||||
|
||||
\begin{align}
|
||||
\mathcal{Q}_p(x) = E[\rho_p(x-y)] = ∫ \rho_p(x-y)f(y)dy
|
||||
\mathcal{Q}_p(x) = \mathbb{E}[\rho_p(x-y)] = ∫ \rho_p(x-y)f(y)dy
|
||||
\end{align}
|
||||
|
||||
This integral form is where the convolution becomes apparent. A convolution of functions is defined as:
|
||||
|
||||
\begin{align}
|
||||
(g * h)(x) &= ∫ g(z)h(x - z)dz \\
|
||||
&= ∫ h(x - z)g(z)dz
|
||||
&= ∫ g(x - z)h(z)dz
|
||||
\end{align}
|
||||
|
||||
They are commutative.
|
||||
@@ -1477,7 +1477,7 @@ To find $\mathcal{Q}''_p(x)$ we rewrite \eqref{eq:check}:
|
||||
The function $\rho'_p(z)$ jumps from $-p$ to $1-p$ at $0$. So:
|
||||
|
||||
\begin{align}
|
||||
\rho''_p(x) = \delta_0(z) \quad \text{Dirac Delta}
|
||||
\rho''_p(x) = \delta_0(z) \quad \text{(Dirac Delta)}
|
||||
\end{align}
|
||||
|
||||
Now the magical part <i class="fa fa-fw fa-wand-magic-sparkles" style="color:var(--col_amber_6);"></i>:
|
||||
|
||||
Reference in New Issue
Block a user