Add svg qr code
This commit is contained in:
16
index.qmd
16
index.qmd
@@ -765,7 +765,7 @@ Berrisch, J., & Ziel, F. [-@BERRISCH2023105221]. *Journal of Econometrics*, 237(
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
The Idea:
|
||||
### The Idea:
|
||||
|
||||
- Combine multiple forecasts instead of choosing one
|
||||
|
||||
@@ -958,7 +958,7 @@ Each day, $t = 1, 2, ... T$
|
||||
|
||||
- The experts can be institutions, persons, or models
|
||||
- The forecasts can be point-forecasts (i.e., mean or median) or full predictive distributions
|
||||
- We do not need any assumptions concerning the underlying data
|
||||
- We do not need a distributional assumption concerning the underlying data
|
||||
- @cesa2006prediction
|
||||
|
||||
:::
|
||||
@@ -1080,7 +1080,7 @@ In stochastic settings, the cumulative Risk should be analyzed @wintenberger2017
|
||||
\frac{1}{t}\left(\widetilde{\mathcal{R}}_t - \widehat{\mathcal{R}}_{t,\min} \right) \stackrel{t\to \infty}{\rightarrow} a \quad \text{with} \quad a \leq 0.
|
||||
\label{eq_opt_select}
|
||||
\end{equation}
|
||||
The forecaster is asymptotically not worse than the best expert $\widehat{\mathcal{R}}_{t,\min}$.
|
||||
The forecaster is asymptotically not worse than the best expert.
|
||||
|
||||
### The convex aggregation problem
|
||||
|
||||
@@ -1088,7 +1088,7 @@ The forecaster is asymptotically not worse than the best expert $\widehat{\mathc
|
||||
\frac{1}{t}\left(\widetilde{\mathcal{R}}_t - \widehat{\mathcal{R}}_{t,\pi} \right) \stackrel{t\to \infty}{\rightarrow} b \quad \text{with} \quad b \leq 0 .
|
||||
\label{eq_opt_conv}
|
||||
\end{equation}
|
||||
The forecaster is asymptotically not worse than the best convex combination $\widehat{X}_{t,\pi}$ in hindsight (**oracle**).
|
||||
The forecaster is asymptotically not worse than the best convex combination in hindsight (**oracle**).
|
||||
|
||||
:::
|
||||
|
||||
@@ -1209,7 +1209,7 @@ The same algorithm satisfies that there exist a $C>0$ such that for $x>0$ it hol
|
||||
\label{eq_boa_opt_select}
|
||||
\end{equation}
|
||||
|
||||
if $Y_t$ is bounded, the considered loss $\ell$ is convex $G$-Lipschitz and weak exp-concave in its first coordinate.
|
||||
if $Y_t$ is bounded, the considered loss $\ell$ is convex, $G$-Lipschitz, and weak exp-concave in its first coordinate.
|
||||
|
||||
<i class="fa fa-fw fa-arrow-right" style="color:var(--col_grey_10);"></i> Almost optimal w.r.t. *selection* \eqref{eq_optp_select} @gaillard2018efficient.
|
||||
|
||||
@@ -3649,13 +3649,11 @@ Accounting for heteroscedasticity or stabilizing the variance via log transforma
|
||||
|
||||
::: {.column width="48%"}
|
||||
|
||||
</br>
|
||||
|
||||
<center>
|
||||
<img src="assets/voldep/frame.png">
|
||||
<img src="assets/voldep/frame.svg" width="250">
|
||||
</center>
|
||||
|
||||
<i class="fa fa-fw fa-newspaper" style="color:var(--col_grey_10);"></i> @berrisch2023modeling
|
||||
<i class="fa fa-fw fa-newspaper" style="color:var(--col_grey_9);"></i> Berrisch, J., Pappert, S., Ziel, F., & Arsova, A. [-@berrisch2023modeling]. Modeling volatility and dependence of European carbon and energy prices. <em>Finance Research Letters</em>, 52, 103503.
|
||||
|
||||
:::
|
||||
|
||||
|
||||
Reference in New Issue
Block a user